Pilots Handbook
Gyroplane Type MT-03 (UK spec only)

RotorSport UK Ltd
Poplar Farm
Prolley Moor
Wentnor
Bishops Castle
SY9 5EJ

Company Reg No 5486550

Remember! THIS IS A COPY OF THE MANUAL FOR YOU
THE MODIFY AND USE FOR YOUR OWN MARKET! Remove
all reference to RotorSport UK Ltd, as the manual is not approved
by RSUK or the UK CAA…
Applicability

Aircraft Registration: G-
Aircraft serial no. RSUK/MT-03/
Engine type: Rotax
Engine serial No:
Rotor blade type & diameter: Autogyro 8,4m (modified)
Propeller type: HTC 1,73m

NOTE!

This autogyro may be operated only under adherence to the operation limits and the information contained in this manual. The manual should be carried on board the aircraft.

The manual is not a replacement for theoretical and practical training as to how to operate this machine. Failure to adhere to its provisions or to take proper instruction can have fatal consequences
<table>
<thead>
<tr>
<th>Table of contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. GENERAL</td>
<td></td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>7</td>
</tr>
<tr>
<td>1.2 UK Authority for flight</td>
<td>7</td>
</tr>
<tr>
<td>1.3 Explanations and sensible safety measures</td>
<td>7</td>
</tr>
<tr>
<td>1.4 Aircraft description</td>
<td>8</td>
</tr>
<tr>
<td>1.5 Pictorial views</td>
<td>9</td>
</tr>
<tr>
<td>2. OPERATIONAL LIMITS</td>
<td></td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>12</td>
</tr>
<tr>
<td>2.2 Airspeed</td>
<td>13</td>
</tr>
<tr>
<td>2.3 Airspeed indicator marking</td>
<td>13</td>
</tr>
<tr>
<td>2.4 Engine</td>
<td>14</td>
</tr>
<tr>
<td>2.5 Engine instruments</td>
<td>14</td>
</tr>
<tr>
<td>2.6 Weight and balance</td>
<td>15</td>
</tr>
<tr>
<td>2.7 Fuel</td>
<td>16</td>
</tr>
<tr>
<td>2.8 General placards</td>
<td>17</td>
</tr>
<tr>
<td>3. EMERGENCY PROCEDURE</td>
<td></td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>20</td>
</tr>
<tr>
<td>3.2 Engine failure</td>
<td>20</td>
</tr>
<tr>
<td>3.3 Engine start in the flight</td>
<td>21</td>
</tr>
<tr>
<td>3.4 Abandoning the aircraft</td>
<td>21</td>
</tr>
<tr>
<td>3.5 Smoke and fire</td>
<td>21</td>
</tr>
<tr>
<td>3.6 Gliding flight & forced landings</td>
<td>21</td>
</tr>
<tr>
<td>3.7 Precautionary landings</td>
<td>22</td>
</tr>
<tr>
<td>3.8 Loss of control</td>
<td>22</td>
</tr>
<tr>
<td>3.9 Engine shutdown</td>
<td>22</td>
</tr>
<tr>
<td>4. NORMAL OPERATIONAL PROCEDURES</td>
<td></td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>23</td>
</tr>
<tr>
<td>4.2 Rotor rigging</td>
<td>23</td>
</tr>
<tr>
<td>4.3 Daily inspection</td>
<td>26</td>
</tr>
<tr>
<td>4.4 Flight Operation</td>
<td>28</td>
</tr>
<tr>
<td>4.5 Normal procedures and check list</td>
<td>28</td>
</tr>
<tr>
<td>5. PERFORMANCE</td>
<td></td>
</tr>
<tr>
<td>5.1 Performance data</td>
<td>32</td>
</tr>
<tr>
<td>5.2 Further data</td>
<td>33</td>
</tr>
<tr>
<td>5.3 Height distance diagram</td>
<td>34</td>
</tr>
</tbody>
</table>
6. DESCRIPTION
6.1 Structure 34
6.2 Control 35
6.3 Instrument panel 38
6.4 Chassis 41
6.5 Seats and belts 41
6.6 Engine 41
6.7 Fuel system 43
6.8 Electrical system 45
6.9 Pitot and static pressure 45
6.10 Avionics 45
6.11 Navigation lights 46
6.12 Options and Modifications 46

7. HANDLING, SERVICE AND MAINTENANCE
7.1 Introduction 46
7.2 Inspection intervals of 47
7.3 Repairs 47
7.4 Ground handling & road transport 47
7.5 Cleaning and care 48
7.6 Winter operation 48

8. EQUIPMENT
8.1 Minimum equipment 48
8.2 Additional equipment 48

APPENDIX
 I Change of ownership form 49
 II Incident reporting form 50
AMENDMENTS CONTROL PAGE

Aircraft operators are responsible for ensuring that amendments to their publication are carried out immediately and in accordance with instructions contained in amendment transmittal letters.

Date and sign this sheet to reflect amendment insertion as appropriate and return amendment confirmation slip to the Quality Department of RotorSport UK Ltd.

<table>
<thead>
<tr>
<th>ISSUE NUMBER</th>
<th>DATE</th>
<th>INSERTED BY</th>
<th>ISSUE NUMBER</th>
<th>DATE</th>
<th>INSERTED BY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td></td>
<td></td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>05/08/06</td>
<td></td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>20/11/06</td>
<td></td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>16.8.07</td>
<td></td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>21/11/08</td>
<td></td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>09/02/09</td>
<td></td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>Issue</td>
<td>Date</td>
<td>Page</td>
<td>Issue</td>
<td>Date</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>------------</td>
<td>------</td>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>Title Page</td>
<td>4</td>
<td>21/11/08</td>
<td>Page 30</td>
<td>4</td>
<td>21/11/08</td>
</tr>
<tr>
<td>Page 1</td>
<td>4</td>
<td>21/11/08</td>
<td>Page 31</td>
<td>5</td>
<td>09/02/09</td>
</tr>
<tr>
<td>Page 2</td>
<td>4</td>
<td>21/11/08</td>
<td>Page 32</td>
<td>5</td>
<td>09/02/09</td>
</tr>
<tr>
<td>Page 3</td>
<td>5</td>
<td>09/02/09</td>
<td>Page 33</td>
<td>5</td>
<td>09/02/09</td>
</tr>
<tr>
<td>Page 4</td>
<td>4</td>
<td>21/11/08</td>
<td>Page 34</td>
<td>5</td>
<td>09/02/09</td>
</tr>
<tr>
<td>Page 5</td>
<td>4</td>
<td>21/11/08</td>
<td>Page 35</td>
<td>5</td>
<td>09/02/09</td>
</tr>
<tr>
<td>Page 6</td>
<td>5</td>
<td>09/02/09</td>
<td>Page 36</td>
<td>5</td>
<td>09/02/09</td>
</tr>
<tr>
<td>Page 7</td>
<td>4</td>
<td>21/11/08</td>
<td>Page 37</td>
<td>4</td>
<td>21/11/08</td>
</tr>
<tr>
<td>Page 8</td>
<td>4</td>
<td>21/11/08</td>
<td>Page 38</td>
<td>4</td>
<td>21/11/08</td>
</tr>
<tr>
<td>Page 9</td>
<td>4</td>
<td>21/11/08</td>
<td>Page 39</td>
<td>4</td>
<td>21/11/08</td>
</tr>
<tr>
<td>Page 10</td>
<td>4</td>
<td>21/11/08</td>
<td>Page 40</td>
<td>4</td>
<td>21/11/08</td>
</tr>
<tr>
<td>Page 11</td>
<td>4</td>
<td>21/11/08</td>
<td>Page 41</td>
<td>4</td>
<td>21/11/08</td>
</tr>
<tr>
<td>Page 12</td>
<td>4</td>
<td>21/11/08</td>
<td>Page 42</td>
<td>4</td>
<td>21/11/08</td>
</tr>
<tr>
<td>Page 13</td>
<td>4</td>
<td>21/11/08</td>
<td>Page 43</td>
<td>4</td>
<td>21/11/08</td>
</tr>
<tr>
<td>Page 14</td>
<td>4</td>
<td>21/11/08</td>
<td>Page 44</td>
<td>4</td>
<td>21/11/08</td>
</tr>
<tr>
<td>Page 15</td>
<td>4</td>
<td>21/11/08</td>
<td>Page 45</td>
<td>4</td>
<td>21/11/08</td>
</tr>
<tr>
<td>Page 16</td>
<td>5</td>
<td>09/02/09</td>
<td>Page 46</td>
<td>4</td>
<td>21/11/08</td>
</tr>
<tr>
<td>Page 17</td>
<td>5</td>
<td>09/02/09</td>
<td>Page 47</td>
<td>4</td>
<td>21/11/08</td>
</tr>
<tr>
<td>Page 18</td>
<td>5</td>
<td>09/02/09</td>
<td>Page 48</td>
<td>4</td>
<td>21/11/08</td>
</tr>
<tr>
<td>Page 19</td>
<td>5</td>
<td>09/02/09</td>
<td>Page 49</td>
<td>4</td>
<td>21/11/08</td>
</tr>
<tr>
<td>Page 20</td>
<td>5</td>
<td>09/02/09</td>
<td>Page 50</td>
<td>4</td>
<td>21/11/08</td>
</tr>
<tr>
<td>Page 21</td>
<td>5</td>
<td>09/02/09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page 22</td>
<td>5</td>
<td>09/02/09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page 23</td>
<td>4</td>
<td>21/11/08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page 24</td>
<td>4</td>
<td>21/11/08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page 25</td>
<td>4</td>
<td>21/11/08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page 26</td>
<td>5</td>
<td>09/02/09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page 27</td>
<td>4</td>
<td>21/11/08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page 28</td>
<td>4</td>
<td>21/11/08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page 29</td>
<td>4</td>
<td>21/11/08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page 30</td>
<td>4</td>
<td>21/11/08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page 31</td>
<td>5</td>
<td>09/02/09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page 32</td>
<td>5</td>
<td>09/02/09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page 33</td>
<td>5</td>
<td>09/02/09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page 34</td>
<td>5</td>
<td>09/02/09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page 35</td>
<td>5</td>
<td>09/02/09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page 36</td>
<td>5</td>
<td>09/02/09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page 37</td>
<td>4</td>
<td>21/11/08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page 38</td>
<td>4</td>
<td>21/11/08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page 39</td>
<td>4</td>
<td>21/11/08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page 40</td>
<td>4</td>
<td>21/11/08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page 41</td>
<td>4</td>
<td>21/11/08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page 42</td>
<td>4</td>
<td>21/11/08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page 43</td>
<td>4</td>
<td>21/11/08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page 44</td>
<td>4</td>
<td>21/11/08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page 45</td>
<td>4</td>
<td>21/11/08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page 46</td>
<td>4</td>
<td>21/11/08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page 47</td>
<td>4</td>
<td>21/11/08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page 48</td>
<td>4</td>
<td>21/11/08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page 49</td>
<td>4</td>
<td>21/11/08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page 50</td>
<td>4</td>
<td>21/11/08</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RotorSport UK Ltd approval signatures for this Pilot Handbook

<table>
<thead>
<tr>
<th>Signature:</th>
<th>Signature:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position:</td>
<td>Position:</td>
</tr>
<tr>
<td>Test Pilot & Eng. Manager</td>
<td>Flight Test Observer & Inspector</td>
</tr>
<tr>
<td>Date: 21/11/08</td>
<td>Date: 09/02/09</td>
</tr>
</tbody>
</table>

(signatures on master copy)
GENERAL INFORMATION

1.1 INTRODUCTION
This manual is provided to give pilots and instructors information which contributes to the safe and efficient operation of this autogyro.

It also contains basic information from the aircraft manufacturer, as well as the legal basis for flight.

Pilots of this aircraft must hold an appropriate type licence, with type conversion training by an authorised instructor.

Pilots must make themselves familiar before flight with the special characteristics of this autogyro. You are obliged to read both this pilots manual and the maintenance manual to ensure you are familiar with all equipment and aircraft structure/engine.

1.2 AUTHORITY FOR FLIGHT WITHIN THE UK
The legal basis for the operation of this MT-03 autogyro is regulated in the Airworthiness Approval Notification (AAN29134), issued by the Civil Aviation Authority (CAA). It has been shown to comply with the requirements of BCAR Section T issue 3, and is considered as a factory built aircraft.

It is supplied by RotorSport UK Ltd.

The aircraft is equipped and permitted for daytime VFR flight only.

EXPLANATIONS AND SENSIBLE SAFETY MEASURES

The manual is not a replacement for theoretical and practical training on the operation of this machine. Failure to take proper instruction can have fatal consequences.

The following definitions are used in this manual with warnings, precautionary measures and remarks. Their sense and their meaning are described as follows.

WARNING: means that the neglect of the appropriate procedure will result in a direct or critical reduction of flight safety.

NOTE: means that the neglect of the appropriate procedure will lead, on a longer time base, to a reduction of flight safety.

REMARK: stresses the attention for a special circumstance, which does not affect safety directly, but is still important.
PRECAUTIONARY & SENSIBLE SAFETY MEASURES

Before flight pilots should familiarise themselves with the appropriate navigational, weather and safety information pertinent to their planned route.

Flight in severe turbulence is prohibited.
Flight near thunderstorms is prohibited
Aerobatics and manoeuvres resulting in reduced “g” are prohibited
Smoking in the aircraft is prohibited

The choice, selection and use of this particular aircraft for the purpose chosen is at the sole discretion and responsibility of the owner/pilot. RotorSport UK Ltd take no responsibility for your decision to fly.

In common with other aircraft of this type the MT-03 utilises a non-certified engine. This means that there may be a higher risk of engine failure than in a certified aircraft, with the associated risks of damage or injury as the result of an unplanned landing. Therefore strict compliance with the engine manufacturer’s maintenance schedules, operational procedures and any additional instructions which may be given to you by RotorSport UK Ltd, on behalf of the engine supplier, is essential. The aircraft must always be flown with the risk of engine failure in mind, and must not be flown over any areas where a forced landing can not be safely executed.

1.4 AIRCRAFT DESCRIPTION

Characteristics:
- Autogyro with nose gear wheel chassis
- Airframe manufactured from inert gas welded stainless steel tube
- Two-seat tandem configuration
- GRP spring spar mainwheel undercarriage
- Main wheels fitted with hydraulic disc brakes (operated from the front seat only).
- Extruded aluminium rotor
- Rotor head controlled with connecting rods
- Rudder controlled via cable
- GRP or optional carbon fibre fin, rudder and horizontal stabilizer
- Engine four-stroke flat-four Rotax 912 ULS or optional Rotax 914 UL
- Three-blade ground-adjustable 1.73m diameter HTC propeller

TECHNICAL DATA (see also fig. 1)

- Rotor diameter: 8.40m
- Rotor is either a modified version of the Aircopter product, with RSUK pre coned hub system, or fully manufactured at AutoGyro.
- Length: 5.08m
- Height: 2.65m
- Width: 1.82m
- Rotor blade profile: NACA 8H12
- Empty weight: 240 kg nominal (see individual aircraft load sheet for specific version weight)
• Payload: 210 kg nominal (see individual aircraft load sheet for specific version weight)
• Take-off mass (max.): 450 kg.
• Fuel tank capacity: 35 ltrs or 70ltrs with optional second tank

1.5 PICTORIAL VIEWS OF THE MT-03
View from the rear
2. OPERATIONAL LIMITS

2.1 INTRODUCTION

This section defines the limit values for safe operation of the MT-03 autogyro. It contains the operation limits established during flight testing, as well as limit values established by test or computation. The existing instrument placards are described.

SPECIFIC LIMITATIONS AS PER THE CAA AIRWORTHINESS AUTHORISATION NOTICE

These limitations are mandatory, and are directly copied out below.

6. Conditions Affecting This Approval

6.1 Aerobatic Limitations

Aerobatic manoeuvres are prohibited
Intentional spinning is prohibited
Manoeuvres involving a deliberate reduction in normal ‘g’ shall be avoided

6.2 Loading Limitations

Maximum Total Weight Authorised: 450kg
Maximum Empty Weight: 265 kg (914UL) 259Kg (912ULS)
Maximum Pilot Weight front seat: 125 kg
Minimum Pilot Weight front seat: 60 kg
Maximum Occupant Weight rear seat: 120 kg
Front seat occupants under 60 kg weight must carry suitable ballast
6.3 Engine Limitations

- **Maximum take-off (max. 5 minutes)**: 5800 rpm
- **Max. continuous**: 5000 rpm (914UL) 5500 rpm (912ULS)
- **Max. CHT**: 130°C
- **Min. oil temp.**: 50°C
- **Max. oil temp.**: 140°C
- **Min. oil pressure**: 1.5 bar
- **Max. oil pressure**: 7 bar

6.4 Air Speed Limitations

- **Maximum indicated air speed**: 100mph IAS

6.5 Other Limitations

The aircraft shall be flown by day in visual meteorological conditions only.
Flight in icing conditions is prohibited (not placarded)
Flight in strong gusty winds or wind velocities of more than 72 km/h (40 kts) is prohibited. (not placarded)

RSUK Aerobatic Limitations
Intentional spinning is prohibited.
Aerobatic manoeuvres are prohibited.
Manoeuvres involving a deliberate reduction in normal ‘g’ shall be avoided.
Maximum bank angle 60 degrees from vertical
Flight in icing conditions is prohibited.
Flight in strong gusty winds or wind velocities of more than 72 km/h = 20 m/s = 40 kts is prohibited.
VMC (Visual Meteorological Conditions) only.
This aircraft shall be flown by day and under Visual Flight Rules only

Ensure you read your **CAA Operational Limitations** (part of the Permit to Fly) for exact limitations of your aircraft.

2.2 **AIRSPEED**

The values below are indicated speeds (IAS) measured via the ASI metering hole, centrically located in the fuselage nose.

<table>
<thead>
<tr>
<th>Speed</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{max}</td>
<td>Maximum speed</td>
<td>100 mph</td>
</tr>
<tr>
<td>V_{min}</td>
<td>Minimum level flight speed</td>
<td>18.6mph (914T or lightly loaded 912S)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24.85mph 912S MTOW</td>
</tr>
<tr>
<td>V_{climb}</td>
<td>Best climb speed</td>
<td>56-62mph</td>
</tr>
<tr>
<td>V_A</td>
<td>Manoeuvre speed</td>
<td>50mph</td>
</tr>
<tr>
<td>$V_{Approach}$</td>
<td>Approach speed.</td>
<td>68mph (1st stage) 56mph (final)</td>
</tr>
<tr>
<td>V_{min}</td>
<td>Minimum speed in level flight</td>
<td>25mph (912S at max take off weight)</td>
</tr>
</tbody>
</table>
VT Max speed in turbulence 68mph
Best glide speed 40mph

WARNING! The maximum speed V_{NE} must be never exceeded!

2.3 AIRSPEED INDICATOR MARKS

- Green range (normal range) from 0-50mph
- Yellow range (caution, especially nearing Vne) from 50 to 100mph
- Red line (V_{NE}) at 100mph

2.4 ENGINE

Manufacturer: Bombardier Rotax, Gunskirchen/A
Type: Rotax 912 ULS or Rotax 914UL
Take-off power: 100 HP/5800 rpm (for 5 minutes), 115HP/5800 for the 914UL (for 5 mins max continuous operation)
Continuous duty: 90 HP/5500 rpm (5,000 max continuous, 914UL)
Cylinder head temperature: max. 130 °C
Oil temperature: max. 140 °C
Propeller: HTC 3 blade. Pitch angle: 19.5deg 912ULS, 20.5deg 914UL (ground adjustable to suit engine and working environment). Note that due to the concave face of the propeller measuring this angle is difficult. Propeller is pitched for max ground rpm of 5700.

For further data refer to the engine manual and parts catalogue.

WARNING! The engine must not be run without the propeller fitted – doing so may result in severe engine damage.

2.5 ENGINE INSTRUMENTS

The following engine values are placarded on the instruments:

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Range</th>
<th>Maximum value</th>
<th>Unit of measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine RPM</td>
<td>Green 1600 - 5500</td>
<td>912ULS-Amber 5500 - 5800/5min, red line 5800. 914UL – Amber 5000 to 5800rpm, red line 5800.</td>
<td>rpm</td>
</tr>
<tr>
<td>Oil temperature</td>
<td>50 - 130</td>
<td>140 red line</td>
<td>°C</td>
</tr>
<tr>
<td>Cylinder head temp.</td>
<td>to 130</td>
<td>130</td>
<td>°C</td>
</tr>
<tr>
<td>Oil pressure</td>
<td>1.5 -5</td>
<td>7 (cold weather starting)</td>
<td>bar</td>
</tr>
</tbody>
</table>

Note that, other than the engine rpm, the gauges are marked with these values internally.
2.6 WEIGHT & BALANCE

The maximum take-off weight of the MT-03 is 450 kg. This represents the empty weight (with normal equipment), occupant weight(s), fuel and luggage.

If any accessories are fitted which increase the empty weight of the aircraft then the aircraft’s maximum payload must be reduced accordingly.

The pilot is responsible for ensuring the aircraft is not flown overweight.

NOTE! Flying the aircraft overweight invalidates your Permit to Fly.

The maximum permissible positions of the centre of gravity may not be exceeded.

The centre of gravity of the aircraft type was determined during Section T Compliance evaluation. The envelope operational extremes were tested and found satisfactory. However operation outside of these evaluated points has not been tested!

Evaluation recorded that the approved envelope extremes (with maximum 10Kg baggage in the rear passenger footwell) are:

Most Forward limit - 120pilot, 60Kg pass, min fuel – 596mm forward of mainwheel axle
Most Rearwards limit - 60Kg pilot, max fuel – 376mm forward of mainwheel axle
Most Highest limit - 60Kg pilot min fuel – 952mm above mainwheel axle
Most Lowest limit - 125Kg pilot, max fuel - 819mm above mainwheel axle

Vertical CG position (z) is relative to the wheel axle plane drawn between the main and nose wheel. Longitudinal CG position (x) is fore or aft of the mainwheel axle plane (positive forwards).

The weight and balance report (AWC) supplied with the aircraft shows the Empty Weight and CG envelope calculated for that specific aircraft, with options supplied as new. Empty weight means aircraft containing minimum flight accessories and minimum fuel.

The report also shows, for reference, the thrust line offset.

WARNING! Care must always be taken when flying at extremes of the operational envelope.

Maximum occupant weight in the front seat = 125 kg
Maximum occupant weight in the rear seat (with a 60Kg front seat occupant) = 120Kg
Minimum occupant weight in the front seat = 60 kg
Front seat occupants under 60Kg body weight must carry ballast.

Fuel loading permissible is 450Kg minus occupant weight, minus aircraft empty weight, minus any baggage or items added to the aircraft since weighed. Aircraft empty weight is placarded. Fuel mass is 0.72Kg/ltr.
Example: 450Kg – 246Kg (empty wt) – 75Kg (rear seat occupant) – 85Kg (pilot) – 5Kg (luggage bag) = 39Kg. Usefu fuel load is \(\frac{39}{0.72} = 54 \text{ltrs} \).

Maximum possible fuel load is 70ltrs, 50.4Kg

If ballast is required to meet the minimum front seat loading condition of 60Kg, then it should be in the form of thin lead sheet placed behind and under the pilot seat cushion.

Carrying of bags or other items inside the aircraft is not recommended due to the presence of control cables and linkages. If used, ensure there is no control obstruction! Bags fitted into the rear seat must be securely attached to the seat harness, and included in the weight/balance calculation.

WARNING! The rear seat harness must be fastened correctly around the seat in single seat operation. DO NOT leave loose behind the seat, it may entangle with the rotor controls and prevent correct function!

A small detachable bag is fitted inside the aircraft. Its purpose is to carry the rotor tie down strap and basic aircraft documents only.

2.7 FUEL

The engine manufacturer recommends unleaded gas station premium fuel (MOGAS). AVGAS 100LL can be used, although not recommended for long term operation, as the lead in the fuel causes excess plug fouling and problems with the slipper clutch – refer to the engine manual for further information.

MOGAS should not be used if the fuel temperature exceeds 20°C or at altitudes above 6000ft due to the increased risk of vapour bubble formation in fuel lines. In these conditions AVGAS 100LL should be used.

Whilst refuelling:
1. Ensure that the fuel is clean and water-free.
2. Always use a filter when refuelling, preferably with a water trap
3. Ensure the aircraft keyswitch is OFF before commencing refuelling
4. If refuelling on the port (LH) aircraft side, adjacent to the electrical passenger switches, take care not to spill fuel on the switches. If a spillage occurs, mop up quickly and leave to evaporate totally before turning electrical system back on.
5. Ensure filler caps are tight after refuelling, and any spillage in the base of the aircraft drained/mopped up pre flight.

The balance pipe between the two fuel tanks (where two are fitted) is not capable of transferring fuel from tank to tank at the same rate that fuel can be input to a tank; it may take several minutes for a full tank to equalise levels with an empty one. If it is required to refill both tanks at a fast rate, then fill one tank first, then the other, and top up either as required.

Before flight, use the water drain points under each tank to ensure the fuel is water free.
2.8 GENERAL PLACARDS AND MARKINGS:

In conformity with BCAR Section T the following placards and markings are installed:

- All emergency controls are coloured red.
- All cockpit controls are clearly marked as to their function and method of operation.
- Fuel and oil filler openings are clearly marked, together with the grade or type required.
- Fuel tank capacity is clearly marked.
- Loading conditions are clearly marked as follows:
 - Standard placards
 - Aircraft Payload Specification
 Front seat; max occupant weight 125Kg max, 60Kg min
 Front seat occupant must carry ballast to meet 60Kg min.
 Rear seat occupant 120Kg max
 Empty weight (as measured) Kg
 Fuel load 0.72Kg/ltr
 MTOW 450Kg

Occupant warning

OCCUPANT WARNING
This aircraft has not been certificated to an International Requirement

Limitations

Primary control marking

BRAKE ENGAGE

MAX THROTTLE

CHOKE ON
OPERATING LIMITATIONS

Aerobatic Limitations
Intentional spinning is prohibited.
Aerobatic manoeuvres are prohibited.
Manoeuvres involving a deliberate reduction in normal ‘g’ shall be avoided.
CG Range Limits (Gyroplane) – refer to Pilots Handbook data.

Airspeed Limitations
Maximum Indicated Airspeed (Vne): 100mph

Other Limitations
This aircraft shall be flown by day and under Visual Flight Rules only.
Smoking in the aircraft is prohibited
The aircraft shall not fly closer than 110 metres to any assembly of persons

Fuel gauge

<table>
<thead>
<tr>
<th>Auxiliary socket (where fitted)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12v DC auxiliary socket</td>
</tr>
</tbody>
</table>

Rotor RPM gauge (only where the gauge is marked internally as ‘x100’, but actually reads x10)

<table>
<thead>
<tr>
<th>Coolant overflow bottle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filled with Evans NPG+, equivalent, or 50/50 water/antifreeze</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Engine oil tank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity 3 ltrs. Use Shell VSX or equivalent Motorcycle oil SF or SG</td>
</tr>
</tbody>
</table>
Fuel tank (both, where two fitted)

Side tank fuel capacity:
35 ltrs
UNLEADED PETROL
(AVGAS permissible)

Fuel cut-off valve

Interlock placard (until engraved on panel)

Instructor pack (where fitted. On early versions the switch toggles may go forwards ‘off’ rather than backwards). Brake placard only where brake is fitted.

Ignition cut-off switches.

To switch off, lift safety flaps and pull toggles backwards.

- Other

If the compass deviation is more than 5° on all headings, then a deviation placard must be present. (new placard format from serial /004 and /006)
Instrument placards as section 2.5
The aircraft is fitted with a permanently attached fireproof plate with the aircraft registration number and serial no. marked on it, on the keel or in front of the instrument panel.
The registration letters are placed high on the tail fin, and are 68cm long, 30cm high.
This has been accepted to CAP523, the CAA standard for aircraft registration.
Alternative markings and position of markings is acceptable provided they comply with this standard.

Note that all placards must have the same units of measure as the instruments.

3. EMERGENCY PROCEDURE

3.1 INTRODUCTION

The MT-03 gyroplanes uses an engine which is not certified to normal aviation standards.
Whilst normally reliable, engine reliability cannot be guaranteed, so always bear this in mind.

NOTE: Plan your flight route to allow for unplanned engine failures and subsequent forced landings. Regularly practice your forced landing procedures & techniques.
During your type conversion ensure that you have experienced a full engine out landing, to experience the glide angle and distance required to land.

This manual is not a replacement for theoretical and practical training as to how to operate this machine. Failure to take proper instruction can have fatal consequences.

3.2 ENGINE FAILURE

In case of failure of the engine the following actions are recommended:

Taxying, before take-off – maintain directional control, brake and stop where safe.

Immediately after take-off - land immediately ahead.

In flight at/above 250 feet height – fly a flat curve depending upon wind speed and direction, if necessary land downwind.

In flight, higher than 300ft - consider wind speed and direction. Select a forced landing field, in to wind and/or up any slope.

Landing in trees or high vegetation – take the vegetation surface as the runway, and position the landing to leave the minimum fall to the ground. Try to flare onto the surface to achieve minimum roll on speed. When the wheels contact the vegetation centre the control stick to reduce the risk of the rotor contacting the vegetation.

Rough running of the engine and power loss can be caused by carburettor icing. This is extremely unlikely on this aircraft as it is fitted with a hot water heated jacket around the carburettor inlets.

WARNING! Taking off into carb icing conditions without the engine warmed up properly may prevent the water jacket from stopping carburettor ice from forming.
3.3 ENGINE START IN THE FLIGHT

The engine should not be deliberately stopped in flight except as part of forced landing training under the supervision of a competent Instructor.

Where practical, to limit engine damage, leave the engine to idle at 3000 rpm for about 30 sec to cool before turning it off.

The engine can be restarted in flight using the starter. Use the procedure for starting described in Section 4.2, if possible allowing a 30 second period for warming up before applying full power. Note that to restart the key must be turned completely to off, and then back to start. This interlock is to prevent inadvertent starter engagement.

3.4 ABANDONING THE AIRCRAFT

In normal circumstances occupants should not leave the aircraft while either the propeller or the rotors are turning.

If abandoning the aircraft in an emergency the pilot should turn the off the engine magneto switches and turn the Master switch to “OFF” if this can be done without endangering the occupants.

If abandoning the aircraft with either the propeller and/or the rotors turning the occupants should follow a path in line with the nose of the aircraft, to minimise the risk of being struck by either the rotor or the propeller.

Occupants should be briefed before flight on emergency evacuation procedures, including:

- Actions to be taken in the event of a forced landing
- Operation of the seat harness
- Disconnection of any intercom leads or other connections to the aircraft
- How to safely exit and move away from the aircraft

3.5 SMOKE AND FIRE

Indications of smoke should be treated in the same way as a fire.

Fire on the ground: exit and abandon the autogyro, call the emergency services, use local fire fighting equipment if trained to do so

Fire in the air: Make an emergency landing, exit and abandon the autogyro. Call emergency services.

3.6 GLIDING FLIGHT & FORCED LANDINGS

The best glide speed is 40mph (engine idle), giving a vertical descent rate of about 500ft/min at low aircraft loading, and 800ft/min at MTOW. The height:distance ratio with engine on tickover is approximately 1:5 (500 feet of forward movement for every 100 feet of height). With the engine stopped the ratio is approximately 1:4.

Note that the rate of descent does not increase dramatically with speed increases up to 56mph, and even at zero airspeed the aircraft is safely controllable with the engine off. If there is sufficient height, take the time at zero airspeed to make the choice of landing site, and then
balance airspeed versus descent rate to make the landing in that area. When gliding into a headwind increasing airspeed will have a significant effect on groundspeed and noticeably improve the glide ratio. In the final approach ensure airspeed is increased to above 50mph, by lowering the nose, to give sufficient rotor energy for the deadstick flare.

Height loss with engine failure is, of course, greater than that with idle power. Ensure you understand the HV chart (5.3) to know what airspeed and height combinations are save to operate within.

If gliding for a long distance, either keep on a little power, or increase power periodically to keep the engine warm.

3.7 PRECAUTIONARY LANDINGS
Forced landings, and Precautionary landings (eg suspected mechanical problem or weather problem).
For a landing with a deflated tyre, proceed as follows:
Approach normally, with the intent of a 0mph run on landing directly into wind (& across the runway if needed). Flare the aircraft to achieve this, and use the rotor drag/brakes to limit forward speed. Only if impossible to recover the aircraft from the landing area should it be manoeuvred under its own power, as this could further damage the tire and wheel rim.

3.8 LOSS CONTROL
Loss of primary control systems could be
1. Engine power control. If jammed on, use ignition switches turned on/off to reduce power, and turn off when clear to land in a suitable place. If jammed off, land as per engine off.
2. Rudder control. Use power and rotor to drive into wind, and descend for landing into as large and as soft an area as possible, flaring for minimum ground roll.
3. Rotor head control. Normally the trim device will keep the aircraft flying in pitch. Roll control failure may lead to a flat descending turn. Use rudder, trim and power to balance aircraft, and descend for immediate landing into as large and as soft an area as possible.

3.9 ALTERNATIVE METHOD OF ENGINE SHUTDOWN
Turning the engine off with the mag switches simply earths the coils. If there is an electrical fault the engine can be stopped by isolating the fuel supply. Firstly, ensure the standby electrical pump is switched off. For the turbo engine, turning the keyswitch off will also turn off the primary fuel pump, starving the engine. For the 912ULS engine, which has an engine driven mechanical pump, turn the emergency cut off valve located on the enclosure edge, on the left hand side, just rear of the front seat. It will take about 30secs min for this method to stop the engine. Alternatively, in an emergency, fully close the choke, wait a few seconds, and open the throttle suddenly. This normally chokes the engine and causes it to stop, but is not guaranteed.
4. NORMAL OPERATIONAL PROCEDURE

4.1 INTRODUCTION

Section 4. contains check lists and procedures to be used for the normal operation. Procedures for additional equipment are in Section 8.

4.2 ROTOR RIGGING

Assembly rotor:
The rotor blades, spacer extrusion and hub are provided with numbers to define the installation direction. By matching these numbers, put the blades into the hub. Fit the 9 bolts fitted with ‘thin’ 9mm washers through the hub and blade assembly from the top, and fit an 8mm ‘thin’ washer and M8 nyloc on the lower surface. The bolts are a close fit – and may need a light tap to push home. Raise or lower the blade with respect to the hub to achieve this. DO NOT hammer them in! For early blade sets (identified by square edges to the hub bar), hand tighten only, and adjust the tracking. Do this with a taut string between the cutouts in the blade ends. Tap the blades in the hub bar such that the string passes directly over the centre of the grease nipple in the centre block. When satisfactory, tighten all 18 nuts to 25Nm. For later blade sets no tracking adjustment is normally required. Simply tighten all bolts to 25Nm.

When assembling, or diss-assembling, do not remove or adjust any other nuts/bolts on the hub assembly – the tracking is factory set, and adjusting may change these settings and adversely affect rotor balance.

To fit the rotor to the aircraft proceed as follows:
1. Brake the aircraft securely.
2. Engage the rotor brake with the rotor hub set fore/aft.
3. With the aid of a helper, and some steps (or use the rear seat if tall enough), raise the rotor assembly up into the rotor head.
4. Push through the teeter bolt (making sure the two bushes are greased and in place either side of the hub block) and hand tighten. Note that on later blade sets (with plastic end caps) there may be two different length bushes. Fit as dot marked on the rotor and head hub.
5. Tighten the nut to the required torque (hand tight, 1-2Nm, never tight), and fit a safety pin or split pin through the nut, and secure the pin appropriately.
6. There should be at 0.04 to 0.07mm sideways free play between the rotor and the hub (serial nos 003 and 004). Other serial nos are factory balanced, so free play is pre set by the bushes provided the nut is not overtightened.
7. Grease the bolt via the grease nipple where fitted.
8. Ensure the rotor teeters to the stops freely.

NOTE! From serial no. 004 a new rotor hub is fitted. Refer to the factory if this later design is wanted for 002 or 003.
View of rotor top

9 x Rotor blade attachment bolts with 9mm bore washer under head

Hub bar assy

View of rotor bottom

Do not adjust these nuts/bolts

M8 Nylock nuts, 8mm thin washer under head

Spacer extrusion
Match parts using dot marks on tower, spacer and hub (normally one dot or two dots).
4.3 DAILY & PREFLIGHT INSPECTION

Most, if not all, technical problems can be found with a conscientious and careful pre-flight inspection. In your own interest, take the necessary care and attention with your aircraft. The safety and integrity of an autogyro stands and falls with its regular, conscientious examination and maintenance.

The full pre-flight checklist is shown below.

<table>
<thead>
<tr>
<th>Task</th>
<th>Aircraft area</th>
<th>Task & task type</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>General</td>
<td>Note; wherever possible checks should be carried out with a qualified person in the pilot seat in case of accidental starting, and to operate controls correctly. Op/C - Both ignition (magneto) switches in sound condition and switched OFF Remove frost, snow or ice, if present Check - that the gyroplane documents are available and in order. Ensure all loose equipment is correctly stowed and the gyroplane is free of extraneous items. If single seat operation, ensure rear seat cushion is stowed securely, and seat belt fastened. Check – weight & balance, and carry suitable secure ballast if required. If the gyroplane has not been regularly used, ensure before resumption of flying that: (a) Either (i) the engine has been turned weekly or run fortnightly or (ii) the manufacturer's recommendations have been complied with (b) Previously reported defects have been addressed.</td>
</tr>
<tr>
<td>A2</td>
<td>Windscreen</td>
<td>Inspect - for damage and cleanliness (clean as required).</td>
</tr>
<tr>
<td>A3</td>
<td>Composite</td>
<td>Remove pitot head cover if fitted, and inspect orifice for cleanliness Inspect - radio aerials for damage and security Inspect - condition and security of fiberglass enclosure</td>
</tr>
<tr>
<td>A4</td>
<td>Landing Gear</td>
<td>Inspect - that extension appears normal Inspect - tyres for proper inflation (1.5 to 2.2bar), damage and creep Inspect - brake installation for external evidence of leaks and correct fluid level, and for damage and security Inspect – brake disc securing screws (4 each) are secure Inspect – that nose wheel pivots easily, both springs are correctly attached, and control rods are fastened correctly Inspect – suspension bow for cracks and security of fastenings.</td>
</tr>
<tr>
<td>A5</td>
<td>Flying Controls</td>
<td>Op/C - Rudder controls move rudder and nosewheel from lock to lock and operates in the correct sense. Inspect - Rudder pedals for security of hardware, for proper operation, and for absence of binding. Inspect - Rudder cables for security of hardware and nico clamps, cables for fraying and kinking, and for cable tension. Op/C – Both control sticks moves freely to roll and pitch stops simultaneously with the rotor head and in the correct sense. Inspect both stick fastening bolts/nuts for security. Inspect – Pneumatic control set to ‘BRAKE’ not ‘FLIGHT’. Inspect – linkages between stick and rotor head for loose bearings, loose items, bent or damaged tubes or excess backlash (undo rear seat top fastening and fold forward for access). Op/C – vertical pre rotator slider moves freely without any jamming.</td>
</tr>
<tr>
<td>A6</td>
<td>Powerplant/Engine</td>
<td>Service/lube - Oil reservoir level correct & cap secure, & coolant system full with correct fluid. Inspect – coolant (water and oil) hoses free from splits Inspect - All springs secure and wired where appropriate, esp exhaust Inspect - Exhaust system securely mounted, and free from splits or cracks, leaks etc.</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>A7</td>
<td>Propeller Inspect - Propeller blades & hub clean and free of cracks, splits & damage Inspect - Propeller blades securely mounted to hub, and hub to engine (all bolts/nuts present and secure) Op/C - Propeller and engine turns over smoothly (in normal direction of travel only) with no undue noises etc (with ignition OFF and throttles closed!!) Remember, it may start!! If possible check the aircraft and/or apply brakes!</td>
<td></td>
</tr>
<tr>
<td>A8</td>
<td>Fuel System Inspect - Both tanks (where fitted) for security and condition, ensure absence of leakage, check cap for seal and security, check sight gauge & fuel level, check fuel shut off valve for proper operation. Op/C - Check fuel gauge reading same as actual tank level. Inspect – fuel for water content via drain points under each tank. Inspect - check fuel line for security, cuts, dry rot, and kinks. Inspect - Fuel filter – ensure filter is clear of debris</td>
<td></td>
</tr>
<tr>
<td>A9</td>
<td>Rotor Inspect - Rotor teeter bolt, nut and locking pin in place and rotates freely Inspect - Blade to hub bolts, washers and nuts in place Inspect - No sign of blade cracking or other failure (visual check) Op/C - Rotor teeters freely to stops (both planes) and rotates freely (check with/without control stick). Inspect - Blades clean and free from chips, dents or damage Inspect – that teeter bolt has been correctly lubricated Check – bolts (6) connecting prerotator gear to rotor hub are secure</td>
<td></td>
</tr>
<tr>
<td>A10</td>
<td>Spin up mechanism Op/C - Secure and free, and that the belt is free of splits/cracks (note; if the belt is dry vibration during pre rotation may be experienced: lube with dry lube PTFE or equivalent silicon spray) Inspect – pre rotator gear wheel for cracks or damage Inspect - pre rotator universal joints for free operation or failure Inspect – engine mounting bracket for cracks/fractures Op/C – pre rotator brake works with panel switch switched to ‘BRAKE’ Inspect - lower shaft rubber boot for damage and free movement of slider shaft.</td>
<td></td>
</tr>
<tr>
<td>A11</td>
<td>Tail assembly Op/C - condition and security, check surface for delamination, check cables for fraying and secure connection to rudder, check nico clamp for security, check horizontal stabilisor and fins for security and any sign of damage from heavy tail down landings. Op/C – check rudder bearings for security and operation Op/C – check that cable pulleys work smoothly with no cable fraying</td>
<td></td>
</tr>
<tr>
<td>A12</td>
<td>Cabin area & Instruments Op/C - Safety harness mountings secure, webbing free of tears/frays, and connects/disconnects freely on demand Inspect that seats are securely attached to airframe (and rear seat refixed in place) Inspect - Radio secure, battery charged (if applicable) Inspect - Electrical wiring sound and secure - no sign of overheating or damage Inspect - instrument readings are consistent with ambient conditions Inspect - Test operation of electrical circuits Inspect - that markings and placards are legible</td>
<td></td>
</tr>
<tr>
<td>A13</td>
<td>Airframe Inspect – Welded joints for any sign of distress or accident damage (all areas, but especially the mast to lower airframe behind the seat and under the engine). Inspect – all hardware for tightness/security</td>
<td></td>
</tr>
<tr>
<td>A14</td>
<td>Pneumatics Inspect airlines and cylinders for loose fittings</td>
<td></td>
</tr>
<tr>
<td>A15</td>
<td>Other Op/C – brake lever operates normally and brakes function. Op/C - Ground run. Check both electric fuel pumps (where fitted) are operational before starting engine. Confirm full power obtainable (if practical), & that engine, propeller & rotor vibration is within normal limits. Confirm all gauges reading normally. Check - Remove any rotor retaining straps, and close any luggage bags.</td>
<td></td>
</tr>
</tbody>
</table>
4.4 FLIGHT OPERATION

The manual is not a replacement for theoretical as well as practical training as operates this machine. Failure to take appropriate instruction can have fatal consequences. Before commencing flight operations, and before each flight, the pilot must complete a visual check of the autogyro. Expertise necessary to do this is obtained during the pilot training.

4.5 NORMAL PROCEDURES AND CHECK LIST

ENGINE START PREPARATION

The engine must only be started if the pilot’s seat is occupied by a person trained in the aircraft operation.

Fig 2. gives the basic control layout. Control elements, functions and operation are as follows:

<table>
<thead>
<tr>
<th>Item function</th>
<th>Status</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main switch (9) key</td>
<td>OFF</td>
<td>Turn anticlockwise</td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>Position centre</td>
</tr>
<tr>
<td>START</td>
<td></td>
<td>Turn fully clockwise (spring return to centre)</td>
</tr>
<tr>
<td>Throttle (4)</td>
<td>CLOSED (IDLE)</td>
<td>Pull to the rear</td>
</tr>
<tr>
<td>FULL POWER</td>
<td></td>
<td>Push forward</td>
</tr>
<tr>
<td>Choke (5)</td>
<td>ON</td>
<td>Pull back to the rear</td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td>Push forward & down</td>
</tr>
<tr>
<td>Ignition switch (23)</td>
<td>IGNITION ON</td>
<td>Both switches up</td>
</tr>
<tr>
<td></td>
<td>IGNITION OFF</td>
<td>Both switches down</td>
</tr>
<tr>
<td>Brake (6)</td>
<td>ENGAGED</td>
<td>Operate by pulling the hand lever back to the throttle lever. Lock if needed with pawl.</td>
</tr>
<tr>
<td>OFF</td>
<td></td>
<td>Squeeze lever to throttle and unlock pawl – open hand.</td>
</tr>
<tr>
<td>Fuel cock (912ULS)</td>
<td>ON</td>
<td>Lever in line with aircraft centre line</td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td>At 90 degrees to a/c centre line</td>
</tr>
<tr>
<td>Fuel level (12)</td>
<td></td>
<td>Fuel level must visible in the tank, to the level required for the flight</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Also view fuel gauge for same reading as on tank</td>
</tr>
</tbody>
</table>
START ENGINE

<table>
<thead>
<tr>
<th>Main switch</th>
<th>ON (generator warning light on)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choke</td>
<td>Engage (until engine warm and will run without choke.)</td>
</tr>
<tr>
<td>Throttle</td>
<td>Closed</td>
</tr>
<tr>
<td>Propeller</td>
<td>Danger area – keep clear!</td>
</tr>
<tr>
<td>Brake operation</td>
<td>Lock brakes on</td>
</tr>
<tr>
<td>Magneto switches</td>
<td>On (both)</td>
</tr>
<tr>
<td>Starter</td>
<td>Operate until engine starts. Take care! Do not run the starter continuously for more than 10secs – damage to the battery may result</td>
</tr>
</tbody>
</table>

Check list before the start

1. Safety belts on and secure
2. Helmets secure
3. Parking brake on
4. Fuel supply on
5. Altimeters adjusted
6. Rudder control effective
7. Wind direction known

Commence start

After turning the master switch on, the alternator light will come on, and the boost and TCU electronic check lamps will light for about 2 secs (if Turbo engine). Before starting the Turbo engine, listen for fuel pump noise, and then switch on second pump, and listen for noise increase. If either pump does not run, STOP and investigate. Second pump may be left on, or turned on when ready for flight.

The second pump should be used as a backup for take off and landing only. It is not required for normal flight use.

Check oil pressure. If not increasing correctly shutdown engine immediately and find the cause. When the engine is warm, close the choke. For starting a cold engine, have the choke fully out and throttle closed, otherwise the choke does not work. With a warm engine do not use the choke. Warm the engine up at approx 2000rpm, then at 2,500rpm until the oil temperature reaches 50°C. Check for mag drop at 3,800 rpm by turning off each ignition switch in turn. There should be a 200rpm max drop off.

GROUND HANDLING:
The behaviour of the nose gear wheel is easily learned with some taxiing practice. The nose wheel is self centering, and linked to the pedals via springs and mechanical limit stops. When turning at low speeds use brakes and power to turn as well as the pedals in order to reduce the turning circle.

It is possible that high speed taxiing, or certain loading and ground conditions may cause nose wheel shimmy. In this event, either slow down, or if wheel balancing, slow down or raise the nose.

When moving on the ground take care where the rotor disc is relative to the wind direction, and unless loading up the disc, keep the stick into the direction of the wind to avoid being tipped.
The aircraft has a high centre of gravity, and is most at risk during ground handling when lightly loaded. Whilst taxiing at up to 30mph is safe in a straight line, corners must be taken slowly to prevent the aircraft tipping over. Be careful not to keep the brakes engaged for a long taxy with the choke on – the choke idle rpm is higher, and the resultant thrust increases the brake loads, and can lead to brake fade on a long taxy. Intermittently apply the brake instead. WARNING! Excessive idle rpm on long distances will cause brake pad fade and possible pad damage. Idle rpm should be approx 1600.

START AND CLimb
If possible always take off into wind. The maximum cross-wind component for take off is 22kts. Switch the pneumatics switch to ‘TRIM’, which releases the rotor brake. Keep the engine at about 2000rpm, and the control stick forward. Disengage the parking brake lock pawl, and hold brakes on by squeezing throttle and brake lever together.
Actuate the pre rotator by pressing the button, and as rotor speed increases, increase engine speed to suit. Normal pre spin is a rotor speed of 200 rpm (maximum Prerotator speed is 270 rpm). If the rotor speed overtakes the pre rotator, and the pre rotator disengages, release button. Increase engine rpm and re engage. Disengage pre rotator and pull the stick fully back. Check/adjust trim pressure to about 2bar or less if lightly loaded to reduce stick load on take off.
Let go brakes, and bring the engine up to take off power. Hold direction using the rudder, and as soon as the nose gear wheel takes off, keep the nose down to build up airspeed and take off in a flat attitude. If necessary reduce stick force by actuating the trim.
The best climb speed is 56-62mph. After reaching 260ft, throttle back to about level flight rpm, between 4 and 5,000rpm. Pay attention in hot weather to the cylinder head and oil temperatures. If these should rise with long climbs over the placarded values, then adjust your speed or attitude to compensate.

Note that it is possible to operate without the pre rotator. In this situation, start the blades by hand to about 45rpm. Taxi slowly into wind, and, holding the stick back, let the rotor speed increase. It will take about 320m to reach over 200rpm, at which stage full power can be applied and normal take off procedures continued with.

CRUISE
Turn off the back up electric fuel pump. Transit from climb to cruise, and use the trim to reduce stick force in the chosen cruising speed. Trim position can be seen from the pneumatic pressure gauge. The speed range for the cruise lies between 50 and 90mph with engine speeds from 4000 to 5500 rpm. The most economical speed is 56 to 62mph. The permissible maximum speed (V_{NE}) is 100mph and must not be exceeded. In strong gusty conditions do not fly faster than 68mph. 50-56mph is a safe manoeuvre speed for such conditions.
The cruise fuel consumption is approx. 12 ltr/hr at speeds under 62mph to approx. 20 ltr/hr plus at 100mph, depending on aircraft loading.

LANDING

Before making the approach check all key equipment and functions. Ensure brakes are not locked on, and electric fuel pump turned on.

The landing should take place into wind. Maximum crosswind limitation is 15kts.

Reduce engine rpm and speed to 68mph on short final.

Final approach speed should not be under 56mph. If in turbulence or rain, 62mph. As the aircraft closes to the ground, reduce the speed by flaring and touch down with the main wheels. Hold the stick back to use the rotor as a brake, and reduce speed for taxy. Reduce engine power as required for taxy or idle if at rest.

When required, turn pneumatics selector switches to Rotor Brake, and engage rotor brake (& push the stick forwards). Take care in windy conditions to prevent blade flap, and move stick into wind if needed! Blades can be parked fore and aft the aircraft by either increasing brake pressure at the appropriate time by pulling the stick rearwards, or by depressing the brake interlock release button, and momentarily engaging the prerotator. A little practice may be required.

After engine has idled for at least 30 secs, turn the engine off using the ignition switches, and then turn main switch off. Do not exit the gyroplane until the rotor stops turning.

An emergency landing is made exactly the same way, except that the above speeds should be maintained in order to ensure sufficient rotor energy is left for the final flare.

WARNING! FUEL MANAGEMENT!

The fuel tanks retain an increasing amount of unusable fuel depending on the nose down (descent) angle. At a 5 degree descent there is approximately 1.1ltr of unusable fuel per tank. At 10 degrees nose down this increases to 3.4ltrs per tank. Be careful that you do not descend at a steep attitude with low fuel! The engine may stop from fuel starvation!

Zero fuel contents is marked at 3.4ltrs per tank.

Descent angles are steepest when flying at 450Kg TOW. The following nose down angles (recorded with 75Kg pilot, 100Kg passenger, 28ltr fuel) are for reference only, as exact loading conditions will vary:

- **Normal power on descent, engine at 4,000rpm**
 1. Slow descent, 50mph - 0deg
 2. Normal descent, 60mph - 2deg
 3. Fast descent, 70mph - 3.5deg

- **Low power on, engine at 3,000rpm**
 1. Slow descent, 50mph - 4.5deg
 2. Normal descent, 60mph - 6deg
 3. Fast descent, 70mph - 7deg

- **Flight idle, steep descent**
 1. Slow descent, 50mph - 10deg
 2. Normal descent, 60mph - 11deg
 3. Fast descent, 70mph - 12deg
Note! A heavier pilot will increase the descent angle.

Note! Implementation of aircraft fuel system modification MC-085 allows use of the LH fuel tank contents in a nose down attitude to minimum unusable. The RH ‘header’ fuel tank contents are fed to the left hand tank via a crossover tube at the rear of the tank, so prolonged descent under power at very low fuel tank contents may still drain the left tank with some content in the right tank.

ALWAYS plan your fuel loading to suit your flight, with headwinds and alternate airfields in mind.

ALWAYS make a safe precautionary landing to get more fuel, rather than wait for an unsafe emergency landing because you have run out of fuel!

Check list after flight finish

1. Ensure master switch and electrics are off (prevents a flat battery)
2. Clean and check aircraft ready for next flight (better to find failures now than when you are eager to fly!).
3. Park in the proper area, chock wheels, and cover. Unless required for safety, it is best to leave the aircraft unbraked when parked.
5. Celebrate an excellent flight!

5. ACHIEVEMENTS

5.1 PERFORMANCE DATA

The following operational parameters were confirmed as a result of flight testing. Note that this assumes the engine and aircraft are in good condition, with an averagely capable pilot. The parameters apply to standard conditions (sea level, normal pressure, 15°C, zero wind, max take-off weight 450kg, even field with short grass in good condition). Airfield altitude, higher temperature and low air pressure will change performance data.

SPEEDS
Minimum speed (Vmin) 18.6mph (914T or lightly loaded 912ULS) 25mph for 912ULS MTOW
Manoeuvre speed (VA) 50mph
Cruising speed up to 90mph
Permissible maximum speed (VNE) 100mph

TAKE OFF DISTANCE (MTOW)
Take-off run 20 - 170 m (66-560ft) (depending upon loading and wind force)
Take-off distance over 15m (50ft) obstacle 320m (1056ft) in still wind with the rotors at 200rpm on grass

LANDING DISTANCE
Landing run 0 - 20 m (66ft) braked (although brakes are not normally required)
Landing distance over 15m (50ft) obstacle 80m (260ft)

CLIMB RATE (with standard propeller)
Single-seat 1,200fpm (912S) or over 1,500fpm (914T)
Two seat (450kg) 600fpm at MTOW (912S) or 900fpm (914T)
ROTOR RPM
Assumes steady state (cruise) conditions
MTOW 377rpm
Average TOW 350rpm
Min TOW 310rpm

Rotor rpm will naturally rise from this for a short time in gusts and turns, and will fall if G loadings are reduced. If a reduction in rotor speed is noted, ensure your flight attitude is one which loads the rotor, and take immediate action to achieve this. If rotor speed fluctuations are observed when in a flight state that they should not, then land and investigate immediately.

Rotor rpm will also fall by about 10 to 15 in a minimum speed ‘hover’ Be careful, particularly when lightly laden with maximum power that you do not lose further rpm and rest on the engine power alone. Rotor RPM must not drop below 280rpm.

There is also a meter recording the rotor bearing temperature. Land and investigate if there is any significant rise over the ambient temperature!

5.2 FURTHER DATA RANGES
The range depends on the fuel consumption, which is proportionally larger with high airspeed, as with lower. The most favourable consumption lies somewhat above the speed of the best climb. With two full tanks approximately 550 km (340miles) is available with a cruising speed of 100 km/hr (62mph), but this should be established by trial for each individual aircraft/loading condition

CROSS-WIND
The maximum demonstrated cross-wind component for takeoff is 36 km/hr (22kts). Landing should always be made into wind where practical. The maximum landing crosswind 15kts.

NOISE DATA
The MT-03 meets the German BUT noise protection requirements for ultralight autogyro of 68dB(A) max.

TYRE PRESSURE
Main landing gear wheels 1.5 to 2.2 bar
Nose gear wheel 1.5 to 1.8 bar

SERVICE CEILING
The service ceiling is 10,000 ft.
5.3 Height speed diagram

The height speed diagram indicates the minimum height for the flown speed (IAS), at which a safe landing is considered possible. Engine failures whilst flying at heights and speeds to the left of the graph line may prove fatal for the pilot and passenger.

6. DESCRIPTION
6.1 GENERAL STRUCTURE
The framework of the autogyro consists of an inert gas-welded high-grade stainless steel tubing framework. The tail unit structure is manufactured in GRP (or in certain cases Carbon fibre RP). The engine is attached over a steel tube carrier (motor mounting frame) at the rear of the mast. The rotor system is manufactured from aluminium extruded sections. The main landing gear sprung spar is made from GRP to withstand most handling situations, and the nosegear mounting fork is steel tubing. The fuel tank is manufactured from PA12 – plastic or polyurethane. Fuel pipe is fire resistant fabric-strengthened rubber hose. The windshield consists of break-proof polycarbonate. The pilot enclosure and wheel spats consist of GRP components material.
6.2 Controls

Rotor

The rotor head control is via a normal push/pull rod system, mounted on the keel giving both roll and pitch, with a traditional stick in the front cockpit. Pushing the stick forwards tilts the rotor head forwards, and pulling it back tilts the rotor rearwards. Left or right tilts the rotor disc in those directions.

Stick grip functions

Pre rotator engage button

Trim (forward nose down, rear nose up)

Press to talk (PTT)

Spare

Rear stick

A rear seat stick is available for training purposes.

There are two rear seat stick options. The standard stick is the same length as the front stick, and is general purpose.

The ‘Instructor’ stick is a special long length, giving instructors extra leverage over the student in the front seat. IT IS DANGEROUS to fly with this stick with a normal pilot or student in the rear seat, as that person may be able to overpower the pilot control. When fitted, it is important to ensure full travel of the Instructor stick before flight. The long length means that it moves closer to the instructors abdomen, and bulky clothing etc will get in the way.

The ‘Instructor’ stick is clearly marked with a red band and appropriate etching.

The stick may be removed for weight saving or safety by taking out the two bolts holding the stick in. On no account must the bolts holding the side plates to the control rods be removed.
Remove these two M6 cap head bolts. Note there is a washer between the stick and the side plate, both sides of the stick, both bolts.

Do not remove these bolts

Rudder
The rear rudder pedals are connected to the rudder via steel cable, and to the front pedals by linkages via the nosewheel for steering. Pushing the right pedal will turn the aircraft right in the air and right when on the ground.

Throttle
The front seat is fitted with a throttle, choke and brake lever cluster (see photo). The brakes may be locked on using the detent. Pushing the throttle forward increase power. The choke lever is pulled rearwards to engage, and if inadvertently left on, is pushed off when the throttle lever is moved forwards.
The rear seat is not fitted with a throttle as standard – this is an instructor option fit. The unit is retained with two screws from the top, and one screw and nut retaining the link to the front throttle. The unit may be removed. The unit may also be fitted with a brake lever to operate the mainwheel brakes via a Bowden cable to the front seat throttle cluster. Again, this may be removed, with the appropriate tools and replacement parts.

The rear seat area may also be fitted with a trim switch, mag kill switches and an ASI, as instructor pack 2. These are not intended to be removed once fitted.
A PTT button is mounted to the left of the seat, and a 12v aux socket fitted if required.

6.3 INSTRUMENT PANEL

The arrangement of kind of condition of the control elements and instrumentation in the cockpit is represented in fig. 2. Differences may occur depending on the equipment fitted.

1. Change over switch pneumatics (TRIM to ROTOR BRAKE)
2. Altimeter
3. Airspeed indicator
4. Engine rpm
5. Oil pressure
6. Cylinder Head temperature
7. Oil temperature
8. Ignition switch (one for each coil)
9. Charging lamp
10. Main switch
11. Rotor rpm
12. Compass
13. Hour meter
14. Carburettor intake temperature
15. Rotor bearing temperature
16. Air pressure gauge for Trim and Rotor Brake
17. Accessory switches
18. Electric fuel pump switch
19. Radio (if fitted)
20. Fuel gauge
21. Rotax engine status lights
22. Pre-rotator & rotor brake interlock release
23. 12v Auxiliary socket
24. Transponder
Fig 3: Second generation panel

- Slip indicator
- 3 20 Spare slot for full size or small vsi
- 1 9 5
- 7 12 2 11 1
- 13 behind stick 21
- 14 (deleted in 2007)
- 15
- 24 or vsi
- 22 21
- Throttle cluster
- Heated clothing regulator

Page 40 of 50
6.4 Wheels/tyres

Both the mainwheels and nose wheel use tyre size 400/100-2Ply (with inner tube). If flying in the winter with a frozen-over or snow covered runway, it is advisable to remove the wheel spats in order to avoid their damage and snow build up inside them. It is the pilot’s responsibility to ensure that in the rear part of the spat no snow has built up, which could lead to freezing against the wheels and stopping them from turning. Always use loctite 243 on wheel spat screws, or any other screws removed that do not have a locking method. Alternative tyre may be used following a modification approval. Note that normally alternative heavier duty tyres are nearly always significantly heavier.

Arrangement nose gear wheel and main landing gear
The main landing gear consists of a GRP ‘u’ frame, which is fastened to the airframe. The lower end carries the wheels, which are braked with hydraulic brakes. The nose gear wheel sits in a fork pivoting in the airframe from high-grade steel tube. It is non retractable, has stops in both directions, and is steered by a spring linkage to the pedals. The main landing gear and nose gear wheel are maintenance-free. The nose gear wheel pivot is to be greased as required – it must be always free to rotate, with slight friction load, and has a disc spring under the pivot nut to create this friction load. Check the fixing bolts of the brake disks before each flight. Change tyres when worn (to change the tyre the nose wheel must be removed from the chassis) as per maintenance manual.

6.5 Seats and belts
The seats are GRP bowls, which are fastened to the frame structure by screws, and transfer the pilot weight on the airframe structure. For single-seat flights only the front seat is used, so the cushions of the rear seat have to be removed or secured! A four point harness is fitted in both seats, so the rear belts must be fully fastened prior to single seat operation to prevent excess flapping or loss/damage in flight.

6.6 ENGINE
The engine provided is either a 4 stroke Rotax 912 or 914. This engine is appropriate for the market, and is in use on many other similar aircraft – but possesses no certification. Engine failures occur with more regularity on uncertified engines, so always plan your route and fly in such a way that an emergency landing is safely possible. To ensure maximum reliability, complete all maintenance requirements in line with manufacturers recommendations on time.

When replenishing cooling agents use never pure water, only the recommended 50/50 mixture of antifreeze and distilled water (or Evans NPG+ or equivalent).

Air cleaners to be replaced or cleaned according to the manufacturers recommendation.
Rear end view

Side view

Top view
DESCRIPTION: 4-cylinder.-4 stroke double-piston engine with dry sump lubrication, hydraulic tappets, electronic double ignition, electric starter and transmission. For detail function, technical data etc. see engine manual.

Always ensure oil level is correct before flight (oil reservoir is item 1)! The oil level is measured in aircraft level attitude and should reach between the marks on the dipstic. Before checking, turn the engine by the propeller approx. 8 - 10 revolutions in normal direction of rotation, until you clearly hear the oil gurgle in the tank (take the tank filler cap off first to hear it better). Switch ignition off first!
To get to the tank, remove the top thumbscrew holding the rear seat to the airframe and hinge the seat forwards.

As a check of the coolant level the filler cap (1) of the expansion/storage vessel (2) can be opened, but only with a cold engine.

REMARK
Since the exhaust and its attachment are exposed to high loads by temperature and thermal expansion, these should be frequently checked.

The MT-03 propeller is a 3-Blade-HTC with a diameter of 1,73 m.

6.7 FUEL SYSTEM
The fuel system is under the rear seat and has a capacity of 35 ltr per tank. The tank is ventilated by a ventilation line above the tank to the rear of the mast. Tank level control is via sight lines on the side of the tanks and a fuel gauge on the instrument panel.
The tanks retain an increasing amount of unusable fuel depending on the nose down (descent) angle. At a 5 degree descent there is approximately 1.5ltr of unusable fuel per tank. At 10 degrees nose down this increases to 3.8ltrs per tank. Be careful that you do not descend at a steep attitude with low fuel! The engine may stop from fuel starvation!
Zero fuel contents is marked at 3.4ltrs per tank

Principle sketch fuel system 912S

The engine mechanical pump is backed up with an electrical fuel pump.

WARNING
Fill tank up to max. 2cm under the filler hole, to allow for thermal expansion of the fuel.

Principle fuel system 914T
6.8 ELECTRICAL SYSTEM
The diagram attached in the Maintenance handbook shows the electrical system of the autogyro.
With the Ignition switch OFF the engine is isolated. However, be aware that unless the master switch is off other electrical items will work, and may draw current.
The Cyclon 8Ah battery fitted to the aircraft is designed for engine starting loads only. The starter should be used for short periods, 10secs maximum, as the nominal running current draw from the starter motor may be up to 75amps. Overuse may result in internal battery damage and early failure.

Use of optional items such as heated clothing all draw a significant amount of current. The amount will depend on individual circumstances.

<table>
<thead>
<tr>
<th>Item</th>
<th>Amperage</th>
<th>Wattage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine and engine systems, inc elect fuel pumps (912ULS)</td>
<td>5A</td>
<td>60W</td>
</tr>
<tr>
<td>Engine and engine systems, inc elect fuel pumps (914UL)</td>
<td>8A</td>
<td>96W</td>
</tr>
<tr>
<td>Filser ATR 500 radio (when transmitting) (Max 0.5A, or 6W, on standby)</td>
<td>2.5A</td>
<td>30W</td>
</tr>
<tr>
<td>Filser TRT800 Transponder</td>
<td>0.7A</td>
<td>10W</td>
</tr>
<tr>
<td>Garmin GPSmap max, normally about 4W</td>
<td>1A</td>
<td>12W</td>
</tr>
<tr>
<td>Landing lights, 2x50W</td>
<td>8.3A</td>
<td>100W</td>
</tr>
<tr>
<td>Heated gloves (PER PAIR)</td>
<td>1.5A</td>
<td>18W</td>
</tr>
<tr>
<td>Heated jacket (PER JACKET)</td>
<td>6.4A</td>
<td>77W</td>
</tr>
<tr>
<td>Airworld strobe lights Maximum value</td>
<td>1A</td>
<td>12W</td>
</tr>
</tbody>
</table>

| Available from the rectifier | 22A | 250W |

Notes: normally only the mechanical or one electrical fuel pump is used in flight, saving 3 amps

Warning!
Overloading the electrical system will drain the battery (rated at 8A/hr). On a 914UL aircraft, both fuel pumps are electrical, so draining the electrical system may stop the engine!

6.9 PITOT AND STATIC PRESSURE
The measuring probe for dynamic pressure is in the nose of the enclosure. The hose connecting this to the ASI leads directly to the instruments in the cockpit. The static pressure is measured in the instrument panel.

6.10 AVIONICS
Radio.
Option fit is the Filser ATR500 radio for both external and internal comms. The wiring harness terminates in a Binder connection at each seat, and the antenna may be mounted in the tail as built in, in the nose, or underneath the enclosure (for carbon fibre bodies). Ensure the helmets chosen function correctly before flight, and refer to the radio users manual.
Transponder.
Option fit is a Filser TRT800 Mode S transponder. The antenna protrudes just in front of the nosewheel. Read the user manual for operational instructions, and take care that the Mode S hexadecimal code and aircraft recognition data is correct!
GPS

Garmin GPSmap 196, 296 and 496 (and variants) are optionally fitted to the panel. Other GPS units as individual modifications. These units are protected from the aircraft, and vice versa, by fuses. Never operate without the fuses in place, otherwise a malfunction in the unit may lead to a fire.

Always read the handbook before operation, and never rely only on the GPS. The software maps or data may be out of date.

Some GPS units and antennas emit magnetic fields that vary with respect to time and/or levels of battery charge. These may change your compass deviations, so always cross check between the compass headings with your GPS installed and placard accordingly if required.

The installation of further devices is possible, but the operator must be aware that this increases the unloaded weight and current draw on the engine.

Note that the avionics are an approved package – modification or other installations require CAA/RSUK approval.

The radio JAA approval number is LBA.0.10.911/113JTSO

Where fitted the transponder is a Filser TRT 800 ED73.

6.11 NAVIGATION LIGHTS

These lights, where fitted, may not conform to the relevant ANO. They are not intended for use as approved night flight equipment.

6.12 OPTIONS AND MODIFICATIONS

See the aircraft certificate of conformity for modifications approved. For confirmation of all modifications permissible in the UK, contact RotorSport UK Ltd.

7. HANDLING, MAINTENANCE AND SERVICING

7.1 INTRODUCTION

This chapter contains manufacturers recommendations for correct ground storage of the autogyro, and also recommendations for maintenance and servicing required for performance and reliability. Reference should also be made to the aircraft service manual.

The regular care and cleanliness of engine, propeller, rotor system and enclosure is the first point for aircraft reliability. Do this on a regular basis, more often if weather demands. Insect debris build up on the rotors and propeller reduce performance and increase vibration. In order to avoid bird droppings or soiling of the MT-03, one should cover the aircraft with a light plastic tarpaulin or a cloth. Openings to the engine, service points and airspeed indicator should be closed after the flight (beware of insects, birds etc.). Contamination of the autogyro can be eliminated with clean water, possibly with cleaning additives. Do not use gasoline or solvent for cleaning the glazing, as this will DESTROY it!! The parking area of the aircraft should be protected from the sun, wind and humidity. If it stands continuously in the free air, then it is exposed to strong UV aging, corrosion by humidity, sun and wind, and the manufacturers will take no responsibility for the safety margins eroded by such actions.
7.2 REGULAR MAINTENANCE REQUIREMENTS

It is the owner and pilots responsibility to ensure the aircraft is properly maintained in accordance with the Maintenance Manual, document no. RSUK0012. Failure to do so may invalidate your Permit to Fly. Maintenance and inspection tasks must be performed by CAA (or LAA if an LAA permit) authorised persons or organisations. Repair processes such as welding or composite layup, or others not documented in the maintenance manual, require prior repair process approval from RSUK/CAA.

An annual aircraft inspection and flight test is currently required.

ENGINE

The engine should be maintained in line with the manufacturers engine manual, and reference must also be made to their service bulletins, available via their website http://www.rotax-owner.com/.

PROPELLER

Maintenance is limited with HTC propellers to cleaning and visual inspection. An overhaul is normally only required if significant blade damage is evident, which will require return to RSUK. Minor chips may be filled with resin – see maintenance manual.

Battery

The engine possesses a generator, which charges the battery (rated at 8A/hr) during the flight. The aircraft is fitted with a discharge-safe gel Elekrolyt battery, which is maintenance-free. Maintenance is therefore limited to outside soundness, correct attachment, and cleaning. Monitor also that no contents of the battery has leaked out. This contains corrosive sulphuric acid, which can lead to heavy damage on contact with the airframe and attachments.

7.3 REPAIRS

Repairs may be implemented by the owner, but are limited to the exchange of defective parts in line with LAA Engineering Procedures (when under LAA Permit control) or relevant CAA publications. Unless documented in the Maintenance manual, only original spare parts may be used, supplied with an Approved Certificate. Parts are available from RotorSport UK Ltd. See the maintenance manual for detail information.

7.4 GROUND HANDLING & ROAD TRANSPORT

Aircraft are generally exposed to larger loads on the ground than in air, especially in road transport. Since the structure is designed for air use, this can induce a safety risk. Hard landings and rough ground (especially potholes) all induce high accelerations on the autogyro framework, as does being bounced around on the back of a road trailer. Therefore avoid unnecessary road transport, and use trailers with good suspension. Always protect the aircraft from road salt etc with appropriate packaging. If road transport cannot be avoided, transport with minimum fuel, which reduces airframe load.
7.5 CLEANING AND CARE
Contamination of the rotor system and propeller can be removed with clean water, possibly with cleaning additives. Clean rotors will significantly reduce vibration and increase lift. Be careful when cleaning the windscreen – no solvent or petrols, as these will lead to cracking. Use only soapy water, and dry carefully to avoid scratching. A good quality polish helps protect the surface finish and reduce surface friction.

7.6 WINTER OPERATION
The cooling system for the cylinder heads of the engine is filled with a mixture of antifreeze and water, which gives freezing protection to -18°C. The density of the coolant, and hence its ability to achieve this performance is checked by an aerometer, and should be checked prior to winter storage to protect your aircraft. If the winter temperatures fall under this value, then drain the coolant, and if required for service, refill with pure antifreeze. Because anti freeze ages, renew the cooling agent every two years. Read the engine manual for the manufacturer’s recommendations. During winter flying operation the necessary operating temperature for oil and cooling agent may not be reached. It is important that the oil temperature reaches higher than 80°C to prevent engine interior corrosion from condensation, so if necessary carefully blank off a portion of the oil cooler and monitor the temperature. Don’t forget to remove the blank (tape) when the weather warms up!

8. EQUIPMENT

8.1 MINIMUM EQUIPMENT
The pilot must wear suitable personal clothing for the weather and flight planned – eg helmet, footwear, sunglasses, heated clothing etc.

The legally prescribed minimum instrumentation is:
- 1 airspeed indicator, measuring range 0 to 120mph (unless otherwise approved), markings such as Section 2.2
- 1 altimeter, range 3000m or 10,000ft.
- 1 compass

ATTENTION
Take care when installing additional equipment in case it changes the magnetic field of the aircraft, and hence the compass accuracy.

8.2 ADDITIONAL EQUIPMENT
Various options are available from RotorSport UK Ltd. Do not fit unapproved accessories as these may invalidate your Permit to Fly!

REMARK
Further individual equipment is available on customer’s request. This increases the take-off weight and leads therefore to a reduction of the permissible payload. Take care if carrying luggage bags or other items in the footwell that they do not and cannot move in such a way as to constrict any control movements.
Appendix 1 Change of ownership form

This form is supplied to enable the new owner to register the change of ownership, so that he/she may receive any service or other information relating to the aircraft. The information is stored on a computer, and is only used within RotorSport UK for the above purpose.

If the new owner does not register, then they will not be automatically updated, which may lead to unsafe flight or an un-airworthy aircraft.

Return this form to:
RotorSport UK Ltd, Poplar Farm, Prolley Moor, Wentnor, Bishops Castle, Shropshire, SY9 5EJ
Or email gerry@rotorsport.org, or fax 01588 650769

<table>
<thead>
<tr>
<th>Aircraft type</th>
<th>Aircraft serial No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aircraft Registration No.</td>
<td>Aircraft Engine No.</td>
</tr>
<tr>
<td>Logbook Aircraft hours</td>
<td>Logbook Engine hours</td>
</tr>
<tr>
<td>Old owners name and address</td>
<td></td>
</tr>
<tr>
<td>Signature & date</td>
<td></td>
</tr>
<tr>
<td>New owners name and address</td>
<td></td>
</tr>
<tr>
<td>Email:</td>
<td></td>
</tr>
<tr>
<td>Signature & date</td>
<td></td>
</tr>
</tbody>
</table>

RSUK Office use only

<table>
<thead>
<tr>
<th>Date entered onto database</th>
<th>Acknowledgement sent (date)</th>
<th>Job completed by:</th>
</tr>
</thead>
</table>
Appendix 2 Incident reporting form

This form is supplied to enable the owner/operator to inform (anonymously if needed) RotorSport UK Ltd of any incident, accident or other field or service failure that they feel appropriate. The owner must also, of course, inform the relevant authorities if that is appropriate – eg Air Accident Investigation Branch etc. Depending on the incident information supplied, a corrective action is investigated and, if needed, supplied back to the customer(s).

The information given is stored on a computer, and is only used within RotorSport UK for the above purpose.

Return this form to: RotorSport UK Ltd, Poplar Farm, Prolley Moor, Wentnor, Bishops Castle, Shropshire, SY9 5EJ
Or email gerry@rotorsport.org, or fax 01588 650769

<table>
<thead>
<tr>
<th>Aircraft type</th>
<th>Aircraft serial No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aircraft Registration No.</td>
<td>Aircraft Engine No.</td>
</tr>
<tr>
<td>Logbook Aircraft hours</td>
<td>Logbook Engine hours</td>
</tr>
<tr>
<td>Pilot name</td>
<td>Passenger name</td>
</tr>
</tbody>
</table>

Incident (please include extra sheets as needed, and be as precise as possible)

Incident location and date | Aircraft loading condition (inc fuel)
Weather conditions | Sheet of

Reporting persons name and address

Email: ____________________________
Signature & date ________________________