Flight and Operation Manual for Gyroplane Calidus
Flight and Operation Manual for Gyroplane Calidus

Model: __
Serial number: __
Registration: __
Type certificate number: __
Aircraft manufacturer and type certificate holder: AutoGyro GmbH, Germany
Distribution partner: __
Owner: __

This flight manual is always to be carried on board of the aircraft and must be kept in current, up-to-date status. The latest revisions and version status is available at www.auto-gyro.com. Extent and revision status of the manual is recorded in the revision log and the table of content.

This gyroplane may be operated only in strict compliance with the limitations and procedures contained in this manual.

The manual is not a substitute for competent theoretical and practical training on the operation of this aircraft. Failure to adhere to its provisions or to take proper flight instruction can have fatal consequences.

Applicability
This manual is applicable for Calidus models from a manufacturing date 01.02.2011 and on. For earlier models please refer to manual version 1.x which will be maintained in current status and revised, if necessary.
REVISION LOG

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Inserted by</th>
<th>Date</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CONTENTS

SECTION 1 - GENERAL ... 1-1
1.1 Introduction ... 1-1
1.2 Certification ... 1-1
1.3 Performance Data and Operating Procedures 1-1
1.4 Definition of Terms ... 1-2
1.5 Important Note ... 1-2
1.6 Three-view of the Calidus .. 1-3
1.7 Description .. 1-4
1.8 Technical Data ... 1-4
1.9 Rotor .. 1-4
1.10 Engine ... 1-5
1.11 Propeller .. 1-5
1.12 Unit Conversion .. 1-6
1.13 Abbreviations and Terminology .. 1-7

SECTION 2 - LIMITATIONS .. 2-1
2.1 General .. 2-1
2.2 Environmental Limitations .. 2-2
2.3 Colour Code for Instrument Markings 2-2
2.4 Airspeed Limitations and Instrument Markings 2-3
2.5 Rotor Speed Limitations and Instrument Markings 2-3
2.6 Powerplant Limitations and Instrument Markings 2-4
2.7 Weight and Balance ... 2-6
2.8 Flight Crew .. 2-7
2.9 Kinds of Operation ... 2-7
2.10 Fuel .. 2-8
2.11 Minimum Equipment .. 2-8
2.12 Placards ... 2-9

SECTION 3 - EMERGENCY PROCEDURES 3-1
3.1 Engine Failure ... 3-1
3.2 Air Restart Procedure .. 3-2
3.3 Landing into Trees or High Vegetation 3-2
3.4 Degradation of Engine Power ... 3-2
3.5 Evacuating the Aircraft .. 3-3
3.6 Smoke and Fire .. 3-3
3.7 Canopy Open in Flight ... 3-4
3.8 Off-field Landing ... 3-4
3.9 Flight Control Malfunction .. 3-4
3.10 Warning Lights .. 3-5
3.11 Parameters out of Limits .. 3-6
3.12 Additional Cockpit Indications ... 3-6
3.13 Loss of Vision ... 3-7
3.14 Recovery System / Rotor System ... 3-7
3.15 Rotor Icing .. 3-7
3.16 Landing with a Deflated Tyre ... 3-7
3.17 Failure of Variable Pitch Propeller (if installed) 3-8
3.18 Alternative Method of Engine Shut-down .. 3-9

SECTION 4 - NORMAL PROCEDURES ... 4-1
4.1 Airspeeds for Safe Operation ... 4-1
4.2 Preparation for Flight .. 4-1
4.3 Daily or Pre-flight Checks .. 4-1
4.4 Before Boarding .. 4-4
4.5 Before Starting Engine ... 4-4
4.6 Starting Engine .. 4-5
4.7 Taxi and Run-up ... 4-6
4.8 Take-off Procedure .. 4-6
4.9 Take-off Run .. 4-8
4.10 Climb .. 4-8
4.11 Cruise .. 4-8
4.12 Descent .. 4-9
4.13 Approach ... 4-9
4.14 Landing ... 4-9
4.15 Go-around .. 4-10
4.16 After Landing .. 4-10
4.17 Engine Shut-down ... 4-11
4.18 Parking .. 4-11
4.19 Special Procedure: Short Field Take-off ... 4-11
4.20 Special Procedure: Slow Speed Sink and Recovery 4-11
4.21 Training Engine In-flight Shut-down and Air Restart 4-12
4.22 Noise Abatement ... 4-12

SECTION 5 - PERFORMANCE ... 5-1
5.1 Demonstrated Operating Temperature .. 5-1
5.2 Airspeed Calibration .. 5-1
5.3 Height-Velocity Diagram ... 5-2
5.4 Speeds .. 5-3
5.5 Rate of Climb ... 5-3
5.6 Take-off and Landing Data .. 5-3
5.7 Glide Ratio .. 5-3
5.8 Additional Performance Data .. 5-4
5.9 Sound Exposure Level / Noise Characteristics 5-4

SECTION 6 - WEIGHT AND BALANCE ... 6-1
6.1 General ... 6-1
6.2 Weight and Balance Record ... 6-1
6.3 Compliance with Weight and Balance ... 6-1
<table>
<thead>
<tr>
<th>SECTION 7 - SYSTEM DESCRIPTION</th>
<th>7-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Introduction</td>
<td>7-1</td>
</tr>
<tr>
<td>7.2 Airframe and Undercarriage</td>
<td>7-1</td>
</tr>
<tr>
<td>7.3 Doors, Windows and Exits</td>
<td>7-1</td>
</tr>
<tr>
<td>7.4 Fuel System</td>
<td>7-1</td>
</tr>
<tr>
<td>7.5 Pneumatic System</td>
<td>7-3</td>
</tr>
<tr>
<td>7.6 Power Plant</td>
<td>7-4</td>
</tr>
<tr>
<td>7.7 Propeller</td>
<td>7-4</td>
</tr>
<tr>
<td>7.8 Rotor System</td>
<td>7-4</td>
</tr>
<tr>
<td>7.9 Vibration Damping</td>
<td>7-5</td>
</tr>
<tr>
<td>7.10 Flight Controls</td>
<td>7-5</td>
</tr>
<tr>
<td>7.11 Electrical System</td>
<td>7-7</td>
</tr>
<tr>
<td>7.12 Lighting System</td>
<td>7-7</td>
</tr>
<tr>
<td>7.13 Instrument Panel</td>
<td>7-7</td>
</tr>
<tr>
<td>7.14 Intercom</td>
<td>7-12</td>
</tr>
<tr>
<td>7.15 Pitot Static</td>
<td>7-12</td>
</tr>
<tr>
<td>7.16 Indicators and Sensors</td>
<td>7-12</td>
</tr>
<tr>
<td>7.17 Seats and Seatbelts</td>
<td>7-12</td>
</tr>
<tr>
<td>7.18 Stowage Capacity</td>
<td>7-12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SECTION 8 - HANDLING AND SERVICING</th>
<th>8-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Maintenance Obligations</td>
<td>8-1</td>
</tr>
<tr>
<td>8.2 General</td>
<td>8-1</td>
</tr>
<tr>
<td>8.3 Ground Handling</td>
<td>8-2</td>
</tr>
<tr>
<td>8.4 Cleaning</td>
<td>8-2</td>
</tr>
<tr>
<td>8.5 Refuelling</td>
<td>8-2</td>
</tr>
<tr>
<td>8.6 Checking of Engine Oil Level</td>
<td>8-2</td>
</tr>
<tr>
<td>8.7 Checking of Engine Coolant Level</td>
<td>8-3</td>
</tr>
<tr>
<td>8.8 Tire Pressure</td>
<td>8-3</td>
</tr>
<tr>
<td>8.9 Lubrication and Greasing</td>
<td>8-3</td>
</tr>
<tr>
<td>8.10 Replenishing of Fluids</td>
<td>8-4</td>
</tr>
<tr>
<td>8.11 Engine Air Filter</td>
<td>8-4</td>
</tr>
<tr>
<td>8.12 Propeller</td>
<td>8-4</td>
</tr>
<tr>
<td>8.13 Battery</td>
<td>8-4</td>
</tr>
<tr>
<td>8.14 Winter Operation</td>
<td>8-4</td>
</tr>
<tr>
<td>8.15 Removal, Disassembly, Assembly and Installation of the Rotor</td>
<td>8-5</td>
</tr>
<tr>
<td>8.16 Road Transport</td>
<td>8-8</td>
</tr>
<tr>
<td>8.17 Repairs</td>
<td>8-9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SECTION 9 - SUPPLEMENTS</th>
<th>9-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-1 Variable Pitch Propeller - IVO</td>
<td></td>
</tr>
<tr>
<td>9-2 Lights</td>
<td></td>
</tr>
<tr>
<td>9-3 GPS/Moving Map Systems</td>
<td></td>
</tr>
<tr>
<td>9-4 Fire Indication</td>
<td></td>
</tr>
<tr>
<td>9-5 Canopy Indication</td>
<td></td>
</tr>
<tr>
<td>SECTION 10 - Appendix.. 10-1</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Customer Feedback Form</td>
<td></td>
</tr>
<tr>
<td>Change of Ownership Form</td>
<td></td>
</tr>
<tr>
<td>Incident Reporting Form</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF EFFECTIVE PAGES

<table>
<thead>
<tr>
<th>Page(s)</th>
<th>Rev.</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1 to 1-8</td>
<td>2.0</td>
<td>01.05.2011</td>
</tr>
<tr>
<td>2-1 to 2-11</td>
<td>2.0</td>
<td>01.05.2011</td>
</tr>
<tr>
<td>3-1 to 3-9</td>
<td>2.0</td>
<td>01.05.2011</td>
</tr>
<tr>
<td>4-1 to 4-12</td>
<td>2.0</td>
<td>01.05.2011</td>
</tr>
<tr>
<td>5-1 to 5-4</td>
<td>2.0</td>
<td>01.05.2011</td>
</tr>
<tr>
<td>6-1</td>
<td>2.0</td>
<td>01.05.2011</td>
</tr>
<tr>
<td>7-1 to 7-12</td>
<td>2.0</td>
<td>01.05.2011</td>
</tr>
<tr>
<td>8-1 to 8-9</td>
<td>2.0</td>
<td>01.05.2011</td>
</tr>
<tr>
<td>9-1 - 1 to 3</td>
<td>2.0</td>
<td>01.05.2011</td>
</tr>
<tr>
<td>9-2 - 1</td>
<td>2.0</td>
<td>01.05.2011</td>
</tr>
<tr>
<td>9-3 - 1</td>
<td>2.0</td>
<td>01.05.2011</td>
</tr>
<tr>
<td>9-4 - 1</td>
<td>2.0</td>
<td>01.05.2011</td>
</tr>
<tr>
<td>9-5 - 1</td>
<td>2.0</td>
<td>01.05.2011</td>
</tr>
</tbody>
</table>
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Introduction</td>
<td>1-1</td>
</tr>
<tr>
<td>1.2</td>
<td>Certification</td>
<td>1-1</td>
</tr>
<tr>
<td>1.3</td>
<td>Performance Data and Operating Procedures</td>
<td>1-1</td>
</tr>
<tr>
<td>1.4</td>
<td>Definition of Terms</td>
<td>1-2</td>
</tr>
<tr>
<td>1.5</td>
<td>Important Note</td>
<td>1-2</td>
</tr>
<tr>
<td>1.6</td>
<td>Three-view of the Calidus</td>
<td>1-3</td>
</tr>
<tr>
<td>1.7</td>
<td>Description</td>
<td>1-4</td>
</tr>
<tr>
<td>1.8</td>
<td>Technical Data</td>
<td>1-4</td>
</tr>
<tr>
<td>1.9</td>
<td>Rotor</td>
<td>1-4</td>
</tr>
<tr>
<td>1.10</td>
<td>Engine</td>
<td>1-5</td>
</tr>
<tr>
<td>1.11</td>
<td>Propeller</td>
<td>1-5</td>
</tr>
<tr>
<td>1.12</td>
<td>Unit Conversion</td>
<td>1-6</td>
</tr>
<tr>
<td>1.13</td>
<td>Abbreviations and Terminology</td>
<td>1-7</td>
</tr>
</tbody>
</table>
INTENTIONALLY LEFT BLANK
SECTION 1 - GENERAL

1.1 Introduction
This manual is designed as an operating guide for pilots, instructors, and owners/operators, providing information for the safe and efficient operation of this gyroplane. It includes material required to be furnished to the pilot by the competent certification authority. This handbook is not designed as a substitute for adequate and competent flight instruction, however.

Pilots of this aircraft must hold a proper license including the class rating ‘gyroplane’, corresponding to the aircraft’s registration. A special endorsement may be required to fly with passengers. It is the pilot’s responsibility to be familiar with this handbook, the special characteristics of this gyroplane, and all other information and legal requirements relevant for the operation in his country. The pilot is responsible to determine the gyroplane is safe for flight, and to operate the aircraft with respect to the procedures and limitations provided in this manual.

It is the owner’s/operator’s responsibility to have this gyroplane registered and insured, according to country-specific regulations. The aircraft owner/operator is also responsible for maintaining the gyroplane in airworthy condition. Maintenance instructions are provided in the Maintenance Manual and in SECTION 8 of this manual. Note that depending on the kind of operation, type of maintenance activity, or component involved, the competent authority may dictate qualified personnel and/or respective facilities.

1.2 Certification
The Calidus is designed, tested and certified according to the German design specifications for microlight gyroplanes (“Bauvorschriften für Ultraleichte Tragschrauber”, BUT 2001) including its latest amendment published in “Nachrichten für Luftfahrer” NF 1 II 13/09 issued 12.02.2009, as well as the British Civil Airworthiness Requirements (BCAR) Section T.

The corresponding certification documents (Geräte-Kennblatt) have been issued by the responsible Germany department DULV (Deutscher Ultraleichtflugverband e.V.), respectively the German national certifying authority.

The noise certificate was granted according to the German requirements for noise protection for microlight gyroplanes ("Lärmschutzverordnung für Ultraleichte Tragschrauber").

1.3 Performance Data and Operating Procedures
The legal basis for operating a gyroplane is provided by national law and its respective regulations. The instructions and conditions contained have to be considered when operating the gyroplane.

All documented performance data and operating procedures have been identified within the certification processes for this gyroplane by means of flight test and analysis.
1.4 Definition of Terms

This manual uses **WARNINGs**, **CAUTIONs** and **NOTEs** in bold capital letters to indicate especially critical and important instructions. Additionally, the colour of the panel (red, yellow, and grey shading) highlights the significance of the instruction. Definitions for each term are given below.

WARNING

A warning means that the neglect of the appropriate procedure or condition could result in personal injury or loss of life.

CAUTION

A caution means that the neglect of the appropriate procedure or condition could result in damage to or destruction of equipment.

NOTE

A note stresses the attention for a special circumstance, which is essential to emphasize.

1.5 Important Note

Before each flight pilots must make themselves familiar with the appropriate navigational, weather and safety information pertinent to their planned route.

The limitations provided in SECTION 2 of this manual must be respected at all times. Check the manufacturer’s web site www.auto-gyro.com regularly for flight manual updates, airworthiness directives, service bulletins, or safety information.

Abrupt manoeuvres or flight in heavy turbulence must be avoided as this could lead to rotor speed variations associated with high stress, possible damage to the aircraft, or uncontrollable attitudes.
1.6 Three-view of the Calidus
1.7 Description

General Characteristics
- Gyroplane with nose gear wheel chassis
- Framework manufactured from inert gas-welded stainless steel tube
- Front aircraft structure is a GRP/CRP monocoque bolted to the airframe
- Two-seat tandem configuration (monocoque design)
- Main landing gear with GRP (glass fibre reinforced plastic) spring spar and hydraulic disc brakes
- Extruded aluminium rotor
- Rotor head controlled with push-pull control cables
- Rudder controlled with cables
- Rudder and stabilizer surfaces made of GRP (or carbon fibre)

1.8 Technical Data

Length: ... 4.78 m
Width: ... 1.73 m
Height: ... 2.74 m
Empty weight: ... 262.0 kg
Payload: ... 188.0 kg
Take-off weight/mass (max.): 450.0 kg
Fuel tank capacity: .. 39 ltr
 (with optional auxiliary fuel tank installed) 75 ltr

1.9 Rotor

General
Type: .. 2-bladed, fixed pitch, free to teeter, with orange end caps
Material: ... T 6005 T5 Aluminium Extrusion
Blade profile: ... NACA 8H12
Rotor diameter: .. 8.4 m
Rotor disc area .. 55.4 sqm
Rotor disc load .. 8.1 kg/sqm
1.10 Engine

ROTAX 912 ULS
- 4-cylinder, four-stroke spark-ignition engine with opposed cylinders
- Liquid cooled cylinder heads
- Air cooled cylinders
- Dry sump forced lubrication with separate oil tank
- Automatic adjustment by hydraulic valve tappet
- 2 carburettors
- Mechanical fuel pump
- Electronic dual ignition
- Propeller speed reduction unit, engine mount assembly
- Electric starter (12V 0.6kW)
- Air intake system, exhaust system

ROTAX 914 UL
- 4-cylinder, four-stroke spark-ignition engine with opposed cylinders with turbo charger
- Liquid cooled cylinder heads
- Air cooled cylinders
- Dry sump forced lubrication with separate oil tank
- Automatic adjustment by hydraulic valve tappet
- 2 carburettors
- Electronic dual ignition
- Propeller speed reduction unit, engine mount assembly
- Electric starter (12V 0.6kW)
- Air intake system, exhaust system

1.11 Propeller

HTC 3 Blade
- Airscrew with ground adjustable pitch made of CRP / GRP
 - Model: HTC 3 Blade 172 ccw 3B
 - Number of blades: 3
 - Diameter: 172 cm
 - In-flight pitch adjustment: none

IVO Prop
- Airscrew with in-flight adjustable pitch made of CRP / GRP
 - Model: IVO Prop medium ccw 3B
 - Number of blades: 3
 - Diameter: 172 cm
 - In-flight pitch adjustment: electric, continuous adjustable
1.12 Unit Conversion

<table>
<thead>
<tr>
<th>Multiply</th>
<th>by</th>
<th>to obtain</th>
</tr>
</thead>
<tbody>
<tr>
<td>kts (knots)</td>
<td>1.852</td>
<td>km/h</td>
</tr>
<tr>
<td>km/h (kilometres per hour)</td>
<td>0.54</td>
<td>kts</td>
</tr>
<tr>
<td>mph (miles per hour)</td>
<td>1.61</td>
<td>km/h</td>
</tr>
<tr>
<td>km/h (kilometres per hour)</td>
<td>0.62</td>
<td>mph</td>
</tr>
<tr>
<td>ft (feet)</td>
<td>0.305</td>
<td>m</td>
</tr>
<tr>
<td>m (metres)</td>
<td>3.28</td>
<td>ft</td>
</tr>
</tbody>
</table>
1.13 Abbreviations and Terminology

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACL</td>
<td>Anti-collision light</td>
</tr>
<tr>
<td>AGL</td>
<td>Above ground level</td>
</tr>
<tr>
<td>CAS</td>
<td>Calibrated Airspeed – indicated speed corrected for installation errors</td>
</tr>
<tr>
<td>ccw</td>
<td>Counter clock wise</td>
</tr>
<tr>
<td>CG</td>
<td>Centre of gravity</td>
</tr>
<tr>
<td>CHT</td>
<td>Cylinder Head Temperature</td>
</tr>
<tr>
<td>CRP</td>
<td>Carbon Reinforced Plastic</td>
</tr>
<tr>
<td>DA</td>
<td>Density Altitude</td>
</tr>
<tr>
<td>Empty Wt</td>
<td>Empty weight of the gyroplane including oil, cooling liquid and unusable fuel</td>
</tr>
<tr>
<td>FOM</td>
<td>Flight and Operation Manual</td>
</tr>
<tr>
<td>G</td>
<td>G-loading as a factor of gravity</td>
</tr>
<tr>
<td>GEN</td>
<td>Generator</td>
</tr>
<tr>
<td>GRP</td>
<td>Glass Reinforced Plastic</td>
</tr>
<tr>
<td>H/V</td>
<td>Height-Velocity</td>
</tr>
<tr>
<td>IAS</td>
<td>Indicated Airspeed – airspeed values in this manual refer to indicated air speed</td>
</tr>
<tr>
<td>ICAO</td>
<td>International Civil Aviation Organization</td>
</tr>
<tr>
<td>In Hg</td>
<td>Manifold Pressure, corresponding to inch mercury</td>
</tr>
<tr>
<td>ISA</td>
<td>International Standard Atmosphere</td>
</tr>
<tr>
<td>LH</td>
<td>Left-hand</td>
</tr>
<tr>
<td>LOEP</td>
<td>List of effective pages</td>
</tr>
<tr>
<td>ltr</td>
<td>Litre</td>
</tr>
<tr>
<td>MAP</td>
<td>Manifold Pressure</td>
</tr>
<tr>
<td>MCP</td>
<td>Maximum continuous power</td>
</tr>
<tr>
<td>MTOW</td>
<td>Maximum take-off weight (mass)</td>
</tr>
<tr>
<td>OAT</td>
<td>Outside Air Temperature</td>
</tr>
<tr>
<td>PA</td>
<td>Pressure Altitude</td>
</tr>
<tr>
<td>RH</td>
<td>Right-hand</td>
</tr>
<tr>
<td>RP</td>
<td>Reference point for the centre of gravity in longitudinal direction</td>
</tr>
<tr>
<td>RPM</td>
<td>Revolutions Per Minute</td>
</tr>
<tr>
<td>sqm</td>
<td>Square metres</td>
</tr>
<tr>
<td>TAS</td>
<td>True Airspeed – calibrated airspeed corrected for air density</td>
</tr>
<tr>
<td>TOP</td>
<td>Take-off power</td>
</tr>
<tr>
<td>Vb</td>
<td>Design speed for maximum gust intensity</td>
</tr>
<tr>
<td>VFR</td>
<td>Visual Flight Rules</td>
</tr>
<tr>
<td>VH</td>
<td>Maximum level-flight speed at maximum continuous power</td>
</tr>
<tr>
<td>(V_{h_{\text{min}}})</td>
<td>Minimum level-flight speed</td>
</tr>
<tr>
<td>(V_{\text{NE}})</td>
<td>Never-Exceed Speed – maximum speed that must never be exceeded</td>
</tr>
<tr>
<td>VOX</td>
<td>means: voice activation</td>
</tr>
<tr>
<td>VPP</td>
<td>Variable Pitch Propeller</td>
</tr>
</tbody>
</table>
V_X Speed for best angle of climb

V_Y Speed for best rate of climb and maximum endurance

$W&B$ Weight and balance
CONTENTS

2.1 General ... 2-1
2.2 Environmental Limitations ... 2-2
2.3 Colour Code for Instrument Markings ... 2-2
2.4 Airspeed Limitations and Instrument Markings .. 2-3
2.5 Rotor Speed Limitations and Instrument Markings 2-3
2.6 Powerplant Limitations and Instrument Markings 2-4
2.7 Weight and Balance ... 2-6
 2.7.1 Weight Limits .. 2-6
 2.7.2 Centre of Gravity (CG) Limits ... 2-6
2.8 Flight Crew .. 2-7
2.9 Kinds of Operation .. 2-7
2.10 Fuel ... 2-8
 2.10.1 Approved Fuel Grades ... 2-8
 2.10.2 Fuel Tank Capacities ... 2-8
 2.10.3 Unusable Fuel ... 2-8
2.11 Minimum Equipment ... 2-8
2.12 Placards 2-9
INTENTIONALLY LEFT BLANK
SECTION 2 - LIMITATIONS

This section contains operating limitations, instrument markings and basic placards which are required for safe operation of the gyroplane, including its engine, and standard equipment or systems.

2.1 General

WARNING

The operation of a gyroplane demands professional pilot instruction and dedicated training on gyroplanes. Without a valid license the gyroplane must not be operated.

WARNING

During the entire flight adequate rotor loading must be maintained. Do not perform any manoeuvres resulting in the sensation of feeling light or near weightless.

WARNING

Smoking on board is prohibited!

CAUTION

This gyroplane has been designed and tested for a safe design load of 3g at maximum gross mass. Note that flying at higher speeds in turbulent air, especially in combination with aggressive manoeuvres or a steep turn, can easily create higher loads on the aircraft.

NOTE

This gyroplane does not comply with the terms of the international authority for civil aviation (ICAO). Therefore, it is not possible to operate it in international air traffic unless specific intergovernmental agreements allow doing so. The reason for this is that there is no international common basis for gyroplanes.
NOTE

During the certification process all required safe loads have been successfully demonstrated. However, the gyroplane may be exposed to much higher loads especially when operated on rough surfaces, such as an unprepared grass strip. In this case it is even more essential to perform a thorough pre-flight inspection and have components and parts exchanged, where needed.

2.2 Environmental Limitations

Maximum wind speed or gust intensity ... 40 kts
Maximum crosswind component for take-off and landing 20 kts
Maximum tailwind component for take-off and landing 5 kts
Temperature .. -20 to + 40 °C

WARNING

Do not consider flying in the likelihood of severe weather. Thunderstorms may develop rapidly with the risk of heavy precipitation or hail, severe turbulence with strong vertical air movements, and lightning strike. If, despite proper flight planning, a thunderstorm should be encountered, consider a precautionary landing to avoid the squall line. A lightning strike may damage the main rotor bearing. Thorough inspection and maintenance after lightning strike must be performed.

2.3 Colour Code for Instrument Markings

<table>
<thead>
<tr>
<th>Colour</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>Operating limits. Pointer should not enter red during normal operation</td>
</tr>
<tr>
<td>Yellow</td>
<td>Precautionary or special operating procedure range</td>
</tr>
<tr>
<td>Green</td>
<td>Normal operating range</td>
</tr>
</tbody>
</table>
2.4 Airspeed Limitations and Instrument Markings

<table>
<thead>
<tr>
<th>Air Speed</th>
<th>Marking</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>V<sub>NE</sub> Never Exceed Speed</td>
<td>Red radial</td>
<td>185 km/h</td>
</tr>
<tr>
<td></td>
<td>Yellow arc</td>
<td>130 – 185 km/h</td>
</tr>
<tr>
<td>V<sub>B</sub> Design speed for max. gust intensity</td>
<td>Green arc</td>
<td>30 - 130 km/h</td>
</tr>
<tr>
<td></td>
<td>Yellow arc</td>
<td>0 – 30 km/h</td>
</tr>
</tbody>
</table>

WARNING
The maximum speed V_{NE} must never be exceeded! Do not exceed V_B when flying through turbulence, gusts or rough winds!

2.5 Rotor Speed Limitations and Instrument Markings

<table>
<thead>
<tr>
<th>Rotor Speed</th>
<th>Marking</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotor speed limit</td>
<td>Red radial</td>
<td>610 RPM</td>
</tr>
<tr>
<td>Rotor speed caution range</td>
<td>Yellow arc</td>
<td>550 – 610 RPM</td>
</tr>
<tr>
<td>Continuous rotor speed</td>
<td>Green arc</td>
<td>200 – 550 RPM</td>
</tr>
<tr>
<td>Maximum pre-rotation speed</td>
<td>Yellow radial</td>
<td>240 RPM</td>
</tr>
</tbody>
</table>
2.6 Powerplant Limitations and Instrument Markings

<table>
<thead>
<tr>
<th>Engine Speed</th>
<th>Marking</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum engine speed</td>
<td>Red radial</td>
<td>5800 RPM</td>
</tr>
<tr>
<td>5 minute take-off power regime</td>
<td>Yellow arc</td>
<td>5500 – 5800 RPM</td>
</tr>
<tr>
<td>Maximum continuous power</td>
<td>Green arc</td>
<td>1400 – 5500 RPM</td>
</tr>
<tr>
<td></td>
<td>Yellow arc</td>
<td>0 – 1400 RPM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Engine Oil Temperature</th>
<th>Marking</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum oil temperature</td>
<td>Red radial</td>
<td>130 °C</td>
</tr>
<tr>
<td></td>
<td>Yellow arc</td>
<td>110 – 130 °C</td>
</tr>
<tr>
<td>Maximum continuous oil temperature</td>
<td>Green arc</td>
<td>90 – 110 °C</td>
</tr>
<tr>
<td></td>
<td>Yellow arc</td>
<td>50 – 90 °C</td>
</tr>
<tr>
<td>Minimum oil temperature</td>
<td>Red radial</td>
<td>50 °C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cylinder Head Temperature</th>
<th>Marking</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum cylinder head temperature</td>
<td>Red radial</td>
<td>135 °C</td>
</tr>
<tr>
<td></td>
<td>Green arc</td>
<td>50 – 135 °C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Engine Oil Pressure</th>
<th>Marking</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum oil pressure</td>
<td>Red radial</td>
<td>7 bar</td>
</tr>
<tr>
<td></td>
<td>Yellow arc</td>
<td>5 – 7 bar</td>
</tr>
<tr>
<td>Maximum continuous oil pressure</td>
<td>Green arc</td>
<td>2 – 5 bar</td>
</tr>
<tr>
<td></td>
<td>Yellow arc</td>
<td>0,8 – 2 bar</td>
</tr>
<tr>
<td>Minimum oil pressure</td>
<td>Red radial</td>
<td>0,8 bar</td>
</tr>
</tbody>
</table>
Manifold Pressure* ROTAX 912 ULS

<table>
<thead>
<tr>
<th></th>
<th>Marking</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum manifold pressure</td>
<td>Red radial</td>
<td>31 In Hg</td>
</tr>
<tr>
<td></td>
<td>Yellow arc</td>
<td>27 – 31 In Hg</td>
</tr>
<tr>
<td>Maximum continuous MAP</td>
<td>Green arc</td>
<td>0 - 27 In Hg</td>
</tr>
</tbody>
</table>

Manifold Pressure* ROTAX 914 UL

<table>
<thead>
<tr>
<th></th>
<th>Marking</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum manifold pressure</td>
<td>Red radial</td>
<td>39 In Hg</td>
</tr>
<tr>
<td></td>
<td>Yellow arc</td>
<td>31 – 39 In Hg</td>
</tr>
<tr>
<td>Maximum continuous MAP</td>
<td>Green arc</td>
<td>0 - 31 In Hg</td>
</tr>
</tbody>
</table>

* Applicable only if installed, MAP gauge is optional equipment and recommended in conjunction with an adjustable pitch propeller. MAP limits do not apply at engine speeds above 5100 RPM.
2.7 Weight and Balance

2.7.1 Weight Limits

Maximum take-off weight (MTOW): ...450 kg

CAUTION

The take-off weight is the total weight of the gyroplane including empty weight, optional/additional equipment, occupants, fuel, and luggage at take-off. The maximum value specified above must never be exceeded.

Maximum weight in front seat (incl. compartment below seat):125 kg
Minimum weight in front seat (incl. compartment below seat):65 kg
Maximum weight in aft seat (incl. compartment below seat):125 kg

NOTE

Pilots in the front seat weighing less than 65 kg must carry corresponding ballast.

Storage compartments below front and aft seat
Maximum weight in each storage compartment (4 ea.)2.5 kg

NOTE

When loaded, the weight in each storage compartment has to be deducted from the maximum weight in the respective seat.

2.7.2 Centre of Gravity (CG) Limits

The centre of gravity is considered to be within limits all weight limits above are respected. For details see SECTION 6 of this manual.
2.8 Flight Crew

Minimum crew is one pilot in the front seat.

Harness in aft seat must be fastened and tight.

The aft control stick must be removed unless the passenger seat is occupied by a qualified flight instructor.

2.9 Kinds of Operation

Only day VFR operation is approved!

Aerobatic flight is prohibited!

NOTE

Manoeuvres involving bank angles of more than 60° are considered to be aerobatic flight.

Low-G manoeuvres are prohibited!

WARNING

Any maneuver resulting in a low-G (near weightless) condition can result in a catastrophic loss of lateral/roll control in conjunction with rapid main rotor RPM decrease. Always maintain adequate load on the rotor and avoid aggressive forward control input performed from level flight or following a pull-up.

Flight in icing conditions is prohibited!

NOTE

Icing may occur even at temperatures above freezing!

Operation in strong gusts or wind speeds of more than 72 km/h (40 kts) is prohibited!
2.10 Fuel

2.10.1 Approved Fuel Grades

Preferred fuel
EN 228 Super or EN228 Super plus (min ROZ 95)

Alternate fuel
AVGAS 100 LL (ASTM D910)

For operational constraints and maintenance aspects when using preferred fuel and alternate fuel, refer to the engine manufacturer’s manual.

2.10.2 Fuel Tank Capacities

Maximum tank capacity, standard tank.. 39 ltr
Maximum tank capacity, with optional auxiliary fuel tank...........................75 l

2.10.3 Unusable Fuel

Unusable fuel quantity, standard tank... 0.6 ltr
Unusable fuel quantity, with optional auxiliary fuel tank............................. 1.2 ltr

2.11 Minimum Equipment

The following equipment must be operative for flight:

- Air speed indicator
- Altimeter
- Compass
- Rotor RPM indicator
- Engine instruments (oil pressure, RPM, CHT)
- Pre-rotator
2.12 Placards

In clear view of the pilot:

- Only VFR day is approved
- Aerobatic flight prohibited!
- Low-G manoeuvres prohibited!
- Flight in icing conditions prohibited!
- For additional limitations see Flight Manual!

Max. gross weight: ________
Empty weight: ________
Max. useful load: ________

At front seat:

Max. weight in seat: 125 kg
Min. weight in seat: 65 kg

At aft seat:

Max. weight in seat: 125 kg

Solo from front seat only

Occupant warning (front and aft seat):

OCCUPANT WARNING
This aircraft has not been certified to an international requirement
At each storage compartment below seats:

Max. load: 2.5 kg
W&B must be respected!

At fuel filler neck:

Min. ROZ 95
AVGAS 100LL

At fuel filler neck:

Capacity Std. Tank 39 litres
With Aux. Fuel Tank 75 litres

At oil filler neck:

Engine Oil: ______________
Approved oil types see engine manual!

At throttle quadrant
At fuel shut-off valve (if installed):

![Fuel Shut-off Valve Diagram](image)

At canopy locking lever:

![Canopy Locking Lever Diagram](image)

At both static ports (2x):

![Static Port Diagram](image)

Do not obstruct!
INTENTIONALLY LEFT BLANK
CONTENTS

3.1 Engine Failure ... 3-1
3.2 Air Restart Procedure .. 3-2
3.3 Landing into Trees or High Vegetation ... 3-2
3.4 Degradation of Engine Power ... 3-2
3.5 Evacuating the Aircraft ... 3-3
3.6 Smoke and Fire ... 3-3
3.7 Canopy Open in Flight .. 3-4
3.8 Off-field Landing .. 3-4
3.9 Flight Control Malfunction ... 3-4
 3.9.1 Engine Power Control / Throttle .. 3-4
 3.9.2 Rudder Malfunction .. 3-5
 3.9.3 Rotor Head Control .. 3-5
3.10 Warning Lights .. 3-5
 3.10.1 GEN or Low Volt Indicator Light .. 3-5
 3.10.2 Low Volt ... 3-5
 3.10.3 BOOST WARN Light (red) - only ROTAX 914 UL ... 3-5
 3.10.4 BOOST CAUTION Light (orange) - only ROTAX 914 UL 3-6
3.11 Parameters out of Limits ... 3-6
3.12 Additional Cockpit Indications ... 3-6
 3.12.1 Fire Indication (if installed) .. 3-6
 3.12.2 Canopy Indication (if installed) ... 3-6
3.13 Loss of Vision .. 3-7
3.14 Recovery System / Rotor System .. 3-7
3.15 Rotor Icing ... 3-7
3.16 Landing with a Deflated Tyre ... 3-7
3.17 Failure of Variable Pitch Propeller (if installed) .. 3-8
3.18 Alternative Method of Engine Shut-down ... 3-9
INTENTIONALLY LEFT BLANK
SECTION 3 - EMERGENCY PROCEDURES

This chapter contains the check lists and procedures to be executed in emergency situations.

Emergencies due to defects of the gyroplane or its engine are extremely seldom if the aircraft is checked thoroughly before each flight and continuously maintained. If there should occur a case of emergency anyhow, the guidelines of this chapter are to be followed in order to manage the emergency.

This gyroplane, like most recreational air vehicles, is fitted with a non-certified engine. This means that there may be a higher risk of engine failure than with a certified aircraft engine, with the associated risks of damage or injury as the result of an unplanned landing. Therefore strict compliance with the engine manufacturer’s maintenance schedules, operational procedures and any additional instructions is essential. The aircraft must always be flown with the risk of engine failure in mind, and must not be flown over any areas where a forced landing cannot be safely executed.

3.1 Engine Failure

In case of an engine failure the following action is recommended:

Engine failure during take-off run
- Maintain directional control using sensitive but appropriate pedal input
- With the rotor/stick remaining aft, let gyroplane decelerate. Wheel brakes may be used to assist.
- At walking speed level-off rotor disc, use wheel brakes and bring rotor to a stop

Engine failure after lift-off and below 150 ft AGL
- The climb-out should be performed according to the Height-Velocity-Diagram in CHAPTER 5
- When engine failure occurs, immediately lower nose to enter glide attitude
- Continue straight ahead – a 180 turn back to the airfield may be a bad option
- Maintain airspeed until ground is approached, then perform flare
- Depending on final approach speed be prepared to flare more distinctly than normal

Engine failure at or above 150 ft AGL
- Consider wind speed and direction
- Select a suitable landing site
- If time allows, a restart may be attempted, see “Air restart procedure” below
- Perform a landing into wind and/or upslope if possible

WARNING
Always plan your route to remain within safe gliding distance to areas where a safe forced landing can be performed in case of an engine failure. A landing in high trees or open waters may end fatally.
NOTE
The best engine-off glide ratio is about 1:3 at 90 km/h. Depending on a possible headwind the glide may be extended by slightly increasing airspeed. It is heavily recommended to train your forced landing capabilities regularly, preferably with a qualified flight instructor.

3.2 Air Restart Procedure
- Check fuel valve OPEN
- Check fuel pump(s) ON
- Check both magnetos ON
- Throttle slightly open
- With the left hand, turn the Main Switch/Starter key completely to OFF, then START
- If possible, allow engine and oil to warm-up before full power is applied

NOTE
The starter interlock function prevents inadvertent starter engagement. Before attempting an engine start, the interlock must be reset by turning the Main Switch/Starter key to OFF.

3.3 Landing into Trees or High Vegetation
- Assume the surface of the treetops or vegetation as level
- Plan touch-down and flare with minimum ground speed and minimum rate of descent
- As soon as the wheels contact the vegetation bring the rotor disc to level attitude to avoid partial blade tip contact with vegetation

3.4 Degradation of Engine Power
A gradual decay in engine RPM, accompanied by a rough running engine or even vibration may be an indicator for carburettor icing. In this case, continue with a high power setting and change altitude into air which is less susceptible to carburettor icing.

If the situation cannot be corrected be prepared for further loss of power and ultimately engine failure.
NOTE
The phenomenon of carburettor icing is extremely unlikely with this engine type as it is fitted with a hot water heated jacket around the carburettor inlets. Note that the system can work properly only when the engine is at operating temperature.

3.5 Evacuating the Aircraft
In normal circumstances occupants should never leave the aircraft while the propeller or the rotors are turning. If abandoning the aircraft in an emergency the pilot should turn off the engine magneto switches and turn the master switch to “OFF” if this can be done without endangering the occupants.

If abandoning the aircraft with either the propeller and/or the rotors turning the occupants should follow a path in line with the nose of the aircraft, to minimise the risk of being struck by either the rotor or the propeller.

Occupants should be briefed before flight on emergency evacuation procedures, including:

- Actions to be taken in the event of a forced landing
- Operation of the seat harness
- Disconnection of any intercom leads or other connections to the aircraft
- How to open the canopy, or to break the canopy if required (using the emergency hammer to break the Plexiglas)
- How to safely exit and move away from the aircraft

3.6 Smoke and Fire
Indications of smoke should be treated in the same way as a fire. In case of fire the following action is recommended:

Smoke or fire on ground
- Both magnetos OFF and master switch OFF to shut-down engine and fuel pumps
- Evacuate aircraft
- Close fuel shut-off valve if situation allows
- Extinguish fire and have damage inspected

Fire in flight
- Immediately switch off cabin heat (if installed – push heat control)
- Open ventilation for fresh air
- Initiate an emergency landing
- Initiate emergency call, if time and situation permits
- As soon as a power-off landing can be assured, shut down engine by switching magnetos OFF and master switch OFF
- Continue procedure as described in “Engine Failure” and “Smoke or fire on ground”
3.7 Canopy Open in Flight

If the canopy pops open in flight, immediately initiate a left side-slip (i.e. right pedal) so that the oncoming air maintains the canopy shut. Reduce air speed and lock the canopy. If impossible to lock, land immediately at the nearest suitable location. Approach with the nose pointed to the right (left side slip) and align just prior to touch-down.

3.8 Off-field Landing

A precautionary landing at a non-prepared site may be performed at pilot’s discretion in order to avoid unexpected weather, in case of severe illness of the pilot or a passenger, or if technical defects are suspected, for example sudden and severe rotor vibrations.

- Select a suitable landing site from safe altitude, considering slope, wind speed and direction
- Fly a reconnaissance pattern to check for obstacles, especially power lines, wires, and cables in the approach and go-around path
- Overfly the landing site to check for obstructions such as fences, ditches, rocks, height of vegetation, and select most suitable touch-down zone
- Perform a normal approach and touch-down into wind with minimal ground speed

3.9 Flight Control Malfunction

In case of a flight control failure the gyroplane can be controlled with the remaining primary and secondary controls, including power and trim. An immediate reduction of power, respectively speed may be necessary to avoid pitch oscillations (phugoid) or other effects affecting dynamic or static stability. Navigate to a suitable landing site with wide and shallow turns and approach against the wind.

3.9.1 Engine Power Control / Throttle

Throttle jammed open or max

Navigate to a suitable landing site with the power set. If over safe terrain, magneto switches may be used to control power. When within gliding distance to the selected landing site, shut-down engine to perform a power-off landing as per Emergency Procedure “Engine failure”.

NOTE

In case of a control cable breakage the carburettor will be automatically set to full throttle position.

Throttle jammed closed

Land as per Emergency Procedure “Engine failure”. Residual power may be used to extend the glide.
3.9.2 Rudder Malfunction

In case of a stuck or loose rudder, continue flight to a suitable, preferably wide landing site that allows a landing into the wind. If necessary reduce power to avoid excessive side slip. Align gyroplane prior to touch-down, using engine torque or lateral control input to the side where the nose is pointed.

3.9.3 Rotor Head Control

In case of a rotor head control malfunction, control pitch attitude using careful trim input and power setting. Use rudder for directional control and for shallow turns. In some conditions it may be appropriate to reduce power/speed in order to avoid phugoid effects or a possible negative yaw-roll coupling. Approach landing site with wide and shallow turns.

3.10 Warning Lights

3.10.1 GEN or Low Volt Indicator Light

ROTAX 912 ULS: If any of the indicators are permanently lit, switch off all unnecessary electrical consumers and land at the nearest airfield where maintenance can be performed.

ROTAX 914 UL: If any of the indicators are permanently lit, switch off all unnecessary electrical consumers and perform a precautionary landing within 15 minutes. Be prepared for an engine failure.

NOTE

A pulsed GEN indicator light is normal and indicates proper function of the generator.

3.10.2 Low Volt

Battery voltage of the system has dropped below a safe value. Refer to chapter above. Aircraft lights and the 12V power receptacle will be disabled automatically.

3.10.3 BOOST WARN Light (red) - only ROTAX 914 UL

- **Continuously lit**
 If continuously lit, the maximum admissible boost pressure was exceeded. Reduce power into normal operating range and consider restricted engine performance or boost control malfunction. Record duration and have maintenance action performed.

- **Blinking**
 When blinking, the allowable 5 minutes take-off power time limit has been exceeded. Reduce power into continuous range. Record duration and have maintenance action performed.
3.10.4 BOOST CAUTION Light (orange) - only ROTAX 914 UL

A blinking BOOST CAUTION light indicates a problem with the turbo/boost control, its sensors or the servo. Engine power is degraded and continuous operation may lead to engine damage. Perform a precautionary landing considering reduced engine performance and be prepared for engine failure.

3.11 Parameters out of Limits

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>EXCURSION</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine Oil Temperature</td>
<td>Upper limit or yellow arc</td>
<td>Reduce power and increase air speed. If condition cannot be corrected, land as soon as practicable.</td>
</tr>
<tr>
<td></td>
<td>Lower limit</td>
<td>Allow engine to warm-up on ground.</td>
</tr>
<tr>
<td></td>
<td>Within lower yellow arc</td>
<td>Increase power setting, if possible. If condition prevails in normal flight, have maintenance action performed.</td>
</tr>
<tr>
<td>Cyl. Head Temperature</td>
<td>Upper limit</td>
<td>Reduce power and increase air speed. If condition cannot be corrected, land as soon as practicable.</td>
</tr>
<tr>
<td>Engine Oil Pressure</td>
<td>Upper limit or yellow arc</td>
<td>Reduce power. If condition cannot be corrected, have maintenance action performed prior to next flight.</td>
</tr>
<tr>
<td></td>
<td>Lower limit</td>
<td>If combined with other indications, such as rising oil temperature or unusual engine behaviour, shut-down engine and perform a power-off landing as per Emergency Procedure “Engine failure”. Otherwise, monitor engine instruments carefully and land as soon as practicable. Have maintenance action performed.</td>
</tr>
</tbody>
</table>

3.12 Additional Cockpit Indications

3.12.1 Fire Indication (if installed)

Refer to emergency procedure ‘Smoke and Fire’ and Flight Manual Supplement.

3.12.2 Canopy Indication (if installed)

Refer to emergency procedure ‘Canopy Open in Flight’ and Flight Manual Supplement.
3.13 Loss of Vision
In case of canopy misting, open air vents and windows to ensure proper ventilation. If the situation cannot be corrected or occurs suddenly, such as after a bird strike or canopy icing, maintain safe attitude by visual reference to the sides, using the open sliding window, if necessary.
When at safe height, stabilize the aircraft at 90 km/h and clear the viewing obstruction by using a hand through the sliding window.
If forward vision is still impaired or lost, continue flight with a left side slip, using the open sliding window for visual reference. Land at the nearest suitable location and align just prior to touch-down.

3.14 Recovery System / Rotor System
This gyroplane is not equipped with a ballistic recovery system. However, its rotor system which is in permanent autorotation serves as such a system. Therefore, the entire rotor system including its rotor head with blade attachments and the corresponding components of the flight controls have to be inspected and maintained carefully.
If any undue vibration or unusual behaviour is experienced a precautionary landing should be considered.

3.15 Rotor Icing
A more than normal or constantly increasing power demand may be caused by an iced-up rotor system. This could ultimately result in a condition where altitude cannot be maintained, even at maximum power. An iced-up rotor system can also cause severe vibration. If any of the signs for rotor icing is evident, carry out a precautionary landing.

3.16 Landing with a Deflated Tyre
Plan to land directly into the wind with minimum rate of descent at touch-down, if possible on a grass runway. Maintain directional control with adequate pedal input. Consider the use of some propeller thrust to increase rudder effectivity. Lower nose gently with the nose wheel pointing straight.
Alternatively, if landing on asphalt is unavoidable, approach normally, with the intent of a zero-speed touch-down directly into wind.
Only if impossible to recover the aircraft from the landing area should it be manoeuvred under its own power, as this could further damage the tire and wheel rim.
3.17 Failure of Variable Pitch Propeller (if installed)

Noticeable defect:
In case of a noticeable mechanical defect, indicated by sudden vibration or noise, perform a precautionary landing.

Run-away:
Propeller pitch changes without command, usually resulting in unexpected or sudden change in engine RPM and engine manifold pressure.

- **Run-away to FINE**: RPM will increase and propeller pitch will stop in full FINE position. Reduce power if needed, to stay within RPM limits.
- **Run-away to COARSE**: RPM will decrease and MAP will rise until propeller pitch stops in full COARSE position. Reduce power if needed, to stay within MAP limits.

In both cases do not try to re-engage circuit breaker until the cause of the run-away has been determined. Continue according to emergency procedure ‘FREEZE’.

Freeze:
Propeller pitch does not react to pilot input, engine RPM does not change while propeller pitch control is activated. Proceed according to the following table:

<table>
<thead>
<tr>
<th>Before take off</th>
<th>Do not take-off</th>
</tr>
</thead>
<tbody>
<tr>
<td>During take-off and climb</td>
<td>Try to keep climbing to a safe altitude, return to the airfield and land. If the aircraft does not climb, maintain altitude and to return in a flat curve.</td>
</tr>
<tr>
<td>During cruise flight</td>
<td>Depending on the prop position, it should be possible to find a speed and RPM to continue the flight to the next possible landing area. Depending on the prop position your descent will look different and a go around is probably not possible.</td>
</tr>
<tr>
<td>During descent</td>
<td>Depending on the prop position (in case of cruise), your descent will look different and a go around will probably not be possible.</td>
</tr>
<tr>
<td>During landing</td>
<td>Continue approach as planned. If the prop changes to cruise and the landing looks too long, keep in mind to cut the engine.</td>
</tr>
</tbody>
</table>
3.18 Alternative Method of Engine Shut-down

If the engine continues running after the magnetos have been switched off use one of the following alternative methods:

Hold throttle lever in IDLE position firmly while overstretching the cable ends of the carburettor control cables with the other hand.

Alternatively

Engage full choke, wait a few seconds and open the throttle suddenly. This normally chokes the engine and causes it to stop

Alternatively – only ROTAX 914

Turn master switch to off to deactivate both primary and secondary electrical fuel pump. The engine will starve after approximately 30 – 60 seconds.
CONTENTS

4.1 Airspeeds for Safe Operation... 4-1
4.2 Preparation for Flight.. 4-1
4.3 Daily or Pre-flight Checks... 4-1
4.4 Before Boarding.. 4-4
4.5 Before Starting Engine... 4-4
4.6 Starting Engine... 4-5
4.7 Taxi and Run-up... 4-6
4.8 Take-off Procedure.. 4-6
4.9 Take-off Run.. 4-8
4.10 Climb.. 4-8
4.11 Cruise... 4-8
4.12 Descent... 4-9
4.13 Approach.. 4-9
4.14 Landing.. 4-9
4.15 Go-around.. 4-10
4.16 After Landing... 4-10
4.17 Engine Shut-down.. 4-11
4.18 Parking.. 4-11
4.19 Special Procedure: Short Field Take-off ... 4-11
4.20 Special Procedure: Slow Speed Sink and Recovery 4-11
4.21 Training Engine In-flight Shut-down and Air Restart...................... 4-12
4.22 Noise Abatement.. 4-12
INTENTIONALLY LEFT BLANK
SECTION 4 - NORMAL PROCEDURES

This section contains check list items, instructions and procedures for the operation of the gyroplane. However, these procedures do not replace the pilot’s appreciation of the individual situation.

4.1 Airspeeds for Safe Operation

Climb .. 100 km/h IAS
Best rate of climb / best endurance... 90 km/h IAS
Best range .. 130 km/h IAS
Approach ... 100 km/h IAS

4.2 Preparation for Flight

The pilot shall be familiar with the aircraft limitations detailed in SECTION 2 of this manual and shall have performed proper flight planning considering required legal aspects, as well as SECTION 5 ‘PERFORMANCE’ and SECTION 6 ‘WEIGHT AND BALANCE’ of this manual. The use of check lists as provided in this manual is mandatory for a safe operation.

4.3 Daily or Pre-flight Checks

All daily or pre-flight check list items consist of visual checks and do not replace professional mechanical inspection and maintenance. The following check list applies for the standard Calidus gyroplane.

Note that depending on optional equipment installed the necessary checks may include additional items according to the flight manual supplement provided with the optional equipment. It is advisable for the owner/operator to compile his own check list suitable to his particular configuration.

The pre-flight check is structured into 11 stations which are organized as a clock-wise walk-around to provide a logical flow and sequential order, thus minimizing the risk of left-over or overlooked items.
The following checks must be carried out before each flight. However, if the gyroplane is operated by a single pilot or within an organization where the checks are performed by or under the supervision of qualified personnel, check list items marked with a preceding ‘ʘ’ may be carried out daily, before the first flight of the day.

Before exterior check
- ʘ Fuel tank drain(s) ... Sample
- ʘ Snow/ ice (if any) .. Removed
Documents ... Check complete

Exterior check

Station 1 (forward fuselage and canopy)
- General appearance .. OK
- Pitot cover (if installed) ... Removed
- Rotor lash bag (if sufficient brake pressure) .. Removed
- Canopy condition and cleanliness ... Check, no cracks
- ʘ Nose wheel condition and air pressure ... Check

Station 2 (pilot station, RH side)
- MAG switches ... Check OFF
- Rotor brake pressure .. min. 6 bar
- ʘ Throttle lever ... Check function, full travel
- ʘ Brake lever and lock ... Check function and condition
- ʘ Brake fluid level .. Check
- ʘ Pedals and control linkage .. Check
- ʘ Forward control stick bolts and nuts .. Secured
- ʘ Monocoque structure condition ... Check
- Loose objects .. Removed/secured

Station 3 (passenger station, RH side)
- Aft seat belts ... Fastened and tight
- Aft control stick .. Removed
If installed: free travel, no contact with back rest Checked/adjusted
- ʘ Monocoque structure condition ... Check
- Loose objects .. Removed/secured
Station 4 (main gear spring spar, RH)
- RH Main wheel running surface ... Check
- Air pressure and slip mark .. Visual check
- ○ Brake and wheel attachment .. Check
- Wheel pant and attachment .. Check
- ○ Main gear spring spar attachment .. Check
- Main gear spring spar .. No cracks
- Lower rotor flight control attachments .. No excessive play and secure
- Cooling air intake ... No obstructions
- Vibration decoupling element ... Bolts tight and secure
- Cardanic hinge bolts (2x) ... Cotter pins installed
- Upper rotor flight control attachments .. No excessive play and secure
- ○ Main rotor bearing .. Check condition
- ○ Pre-rotator assembly and brake ... Check condition
- ○ Teeter bolt (bolt end) ... Free to turn
- Teeter bolt (nut end) ... Cotter pin installed
- ○ Teeter stops ... Check
- ○ Rotor hub and blade clamping area ... Check
- Blade attachment bolts .. All installed and fastened
- ○ Inner blade caps .. Tight

Station 5 (engine, RH side)
Open RH access door
- ○ Before turning prop: MAG switches .. Check OFF
- ○ Engine oil level ... Check
- ○ Dip stick and oil cap ... Installed & Secure
- ○ Coolant level .. Check
Close RH access door
- Oil cooler and hoses RH .. Clean, no leaks, fittings tight
- Exhaust system RH .. No cracks
- Engine cowling RH .. Properly installed, all fasteners locked

Station 6 (stabilizer)
- ○ Stabilizer general condition ... Check
- Stabilizer attachment .. Check
- Rudder control cable linkage ... Check
- Upper rudder bearing ... Secure, no excessive play
- Rotor blades condition and cleanliness .. Check
- Blade tips .. Tight

Station 7 (rear frame and propeller)
- ○ Rear frame scratch pad .. No excessive wear
- Propeller condition and cleanliness .. Check
- Propeller leading edge and tips .. No damage
- Spinner (if installed) .. Tight, no cracks
- Variable pitch propeller (if installed): brushes ... Check
- Variable pitch propeller (if installed): tension strips Check
Section 4

Normal Procedures

Station 8 (engine, LH side)
- Main frame rear side / welded joints: No cracks, no deformation
- Oil cooler and hoses LH: Clean, no leaks, fittings tight
- Exhaust system LH: No cracks
- Engine cowling LH: Properly installed, all fasteners locked

Station 9 (main gear spring spar, LH)
- LH Main wheel running surface: Check
- Air pressure and slip mark: Visual check
- Brake and wheel attachment: Check
- Wheel pant and attachment: Check
- Main gear spring spar attachment: Check
- Main gear spring spar: No cracks
- Rotor flight control and damper attachments: No excessive play and secure
- Teeter bolt (bolt end): Free to turn
- Teeter bolt (nut end): Cotter pin installed

Station 10 (passenger station, LH side)
- Aft canopy hinge: Secure

Station 11 (pilot station, LH side)
- Forward canopy hinge: Secure
- Canopy sliding window and frame: Check, no cracks

Rotor lash bag: As required

4.4 Before Boarding

Fuel level and fuel cap: Check
- Pneumatic mode selector: Check BRAKE position
- Rotor brake pressure: Check/set min. 6 bar
- Rotor lash bag: Removed and stowed

Passenger station:
- Passenger: Briefed and secure
- Aft seat belts: Fastened and tight
- Loose objects: Removed / secured
- Storage compartments: Closed and locked
- Fuel shut off valve: Open and guarded

Pilot station:
- Loose objects: Removed / secured
- Storage compartments: Closed and locked

4.5 Before Starting Engine

Seat belts: Fastened
- Flight controls: Free
- Altimeter: Set to airfield elevation
- Canopy: Closed and locked
4.6 Starting Engine

Parking brake.. Set

Cold engine:
- Throttle .. Idle
- Choke ... Fully engaged

Warm engine:
- Throttle .. Idle or slightly cracked
- Choke ... disengaged
- Master switch.. ON

All engine variants:
- Note GEN indicator light ON
- Note LOW VOLT flashing briefly

ROTAX 914 engine:
- Note BOOST WARN light and BOOST CAUTION light ON for about 2 seconds and buzz of electrical fuel pump.

Second fuel pump P2 (if installed) .. ON

All engine variants: Note (increased) fuel pump buzz.

Variable pitch propeller (if installed) .. FINE
- ACL / Strobe (if installed) .. ON
- Both MAG switches .. ON
- Propeller and area .. “Clear”
- Starter (with right hand, left hand on throttle/brake) .. Engage

Hold starter until engine fires, but for a maximum of 10 seconds. Generally the engine fires immediately. In case of an unsuccessful starting attempt check all preconditions. Wait at least 20 seconds to allow cooling of battery and starter motor before repeated activation.

Oil pressure ... min. 1.5 bar
- Second fuel pump P2 (if installed) ... OFF
- Avionics/Radio/Intercom ... ON
- Choke ... slowly disengage

WARNING

Never attempt to start the engine until the area around the propeller is completely clear of any persons or objects. Do not start the engine while standing beside the aircraft as you will easily be struck by the propeller in case of a brake failure or an operating error.
4.7 Taxi and Run-up

During taxi do not exceed 15 km/h which is approximately jogging speed and steer with careful pedal input. Use wheel brake carefully, if needed, but not before throttle lever has been completely pulled to idle. Control stick should always be maintained in forward centre position. When taxiing on uneven ground, use particular caution and hold control stick so as to avoid the blades or control system hitting their mechanical stops.

Carry out engine run-up in an area with least derogation to individuals and other airport ground traffic, preferably headed into the wind.

Warm-up RPM... 2000 – 2500 RPM
Oil temperature and other engine indications.......................... within limits

At taxi holding position:
Magneto check (at 4000 RPM) .. max. 300 RPM drop
with max. difference between magnetos 115 RPM

Switch ignition/magnetos with right hand while left hand resides on throttle/brake.

Throttle.. Idle
Warning and caution indications.. None
Instruments / altimeter... Cross check
NAV lights... As required
Second fuel pump P2 (if installed) ... ON
Canopy.. Cross-check closed and locked
Approach and runway... “Clear”, then line-up

4.8 Take-off Procedure

- Check relative wind
- Maintain control stick in forward position with right hand
- Switch pneumatic mode selector to FLIGHT and return to brake with left hand
- Hold wheel brake without having locking pawl engaged
- Release trim pressure by trimming full forward
- While holding wheel brake adjust 1800 RPM with throttle
- Activate and hold pre-rotator
- Let pneumatic clutch fully engage (stabilization at about 110 rotor RPM). There may be a little throttle required to prevent engine RPM from dropping below 1800 RPM
- Carefully increase throttle to achieve 200 – 220 rotor RPM
- Release pre-rotator button
- Bring control stick fully aft
- Release wheel brake with throttle unchanged
- Monitor rotor speed and adequately increase throttle to take-off power
WARNING
Before activating the pre-rotator, check area is clear.

WARNING
Prior to releasing the wheel brake make sure that the control stick is fully aft. A take-off run with flat rotor system may have fatal consequences.

WARNING
With the rotor speed below green arc relative speed must be built-up carefully to allow rotor speed to increase first. If the situation cannot be corrected, abort take-off run.

CAUTION
Do not engage pre-rotator at too high engine RPM or until too high rotor RPM as this will lead to pre-rotator drive damage.

NOTE
Perform take-off into the wind and with least possible crosswind component.

NOTE
To avoid unintended engagement in flight the pre-rotator can only be activated with the control stick in its most forward position.
4.9 Take-off Run

- Check min. 5400 RPM for take-off. Otherwise, abort take-off
- Minimize lateral drift by applying appropriate lateral control stick input into cross wind direction
- Maintain directional control i.e. runway alignment with sensitive pedal input
- When nose comes up allow nose wheel to float at about 10 – 15 cm above the runway by a balanced reduction of control stick back pressure
- Maintain attitude until speed increases and gyroplane lifts off
- Allow gyroplane to build-up speed in ground effect

VPP: With a variable pitch propeller installed, refer to the respective flight manual supplement in CHAPTER 9 for correct power setting and handling procedure.

WARNING

Gyroplanes are fully controllable at very low speeds without exhibiting any signs of wing stall or soft flight controls, as it would be perceived in a fixed wing aircraft. However, operation ‘behind the power curve’ may have fatal consequences during take-off, initial climb or in any other situation within ground proximity. Always allow aircraft to build-up safe climb speed before allowing it to gain height.

4.10 Climb

- Perform initial climb at safe climb speed and adjust trim
- Set power to maximum take-off power
- Check engine instruments and respect maximum take-off power time limit
- Switch off second fuel pump at safe height
- At safe altitude, the climb may be continued with V_Y and reduced power setting for noise abatement
- When desired altitude is approached, level gyroplane and reduce power

VPP: With a variable pitch propeller installed, refer to the respective flight manual supplement in CHAPTER 9 for correct power setting and handling procedure.

4.11 Cruise

- Adjust power setting within the maximum continuous power range
- Adjust trim

VPP: With a variable pitch propeller installed, refer to the respective flight manual supplement in CHAPTER 9 for correct power setting and handling procedure.
4.12 Descent

- Reduce power setting and lower nose
- Adjust trim

VPP: With a variable pitch propeller installed, refer to the respective flight manual supplement in CHAPTER 9 for correct power setting and handling procedure.

4.13 Approach

- Switch ON second fuel pump P2 (if installed)
- Set variable pitch propeller (if installed) to FINE
- Check all warning and caution indications OFF
- Check all instruments in normal operating range
- Check wheel brake unlocked
- Maintain and trim approach speed
- Control glide angle with engine power

WARNING

With low fuel level an excessive nose-down attitude, for example in a steep descent, can lead to premature fuel starvation. An approach within the gliding distance to the airport or landing site is generally considered to be the safest option.

4.14 Landing

- Align gyroplane with rudder and correct drift with lateral control input, even if this results in a side slip indication
- Maintain approach speed until approximately 5m above runway
- Initiate round out to reduce sink rate and let ground approach
- Perform final flare close to ground as speed will decay rapidly
- Let gyroplane settle on main gear with nose wheel slightly above the ground
- Hold nose wheel closely above ground and let it sit down with pedals neutral at the lowest possible ground speed
- Maintain aft control stick to reduce speed until walking speed. Wheel brake may be used to assist, if needed.

CAUTION

When landing in a strong headwind do not use wheel brake to prevent gyroplane from rollback. In order to compensate for any rollback tendency, flatten rotor disc as required and increase propeller thrust, if necessary.
4.15 Go-around

- Apply take-off power. Counteract yaw tendency and align gyroplane with rudder input.
- In horizontal flight, allow gyroplane to gain speed
- Climb with safe or best rate of climb speed and adjust trim

VPP: With a variable pitch propeller installed, refer to the respective flight manual supplement in CHAPTER 9 for correct power setting and handling procedure.

4.16 After Landing

- Control stick full forward to level-off rotor disc, at latest when rotor speed leaves green arc! Be prepared for reduced rotor drag!
- Use lateral control into wind to maintain rotor disc in level attitude. Adjust lateral control input as rotor speed decays
- Bring pneumatic mode selector to BRAKE position and return to wheel brake with left hand
- Apply rotor brake pressure by using AFT TRIM. Monitor pressure gauge
- Taxi carefully, preferably not above walking speed and mind high centre of gravity when taking turns
- Do not vacate gyroplane until engine and rotor is at a complete stop

WARNING

Mind the spinning rotor and propeller when taxiing close to obstructions or persons. A fast turning rotor is almost invisible, but may contain enough energy to kill a person.

CAUTION

There are different riskless techniques to park the blades fore and aft. Abrupt pedal input during taxi should be avoided.

NOTE

It is advisable to let the rotor spin down while the gyroplane is at a complete stop. However, in order to vacate the runway, it is possible to taxi while the rotor is spinning down. In this case, be aware of the effects of relative wind on advancing and retreating blade, compensate with lateral control input, and adjust taxi speed carefully as to avoid blade flapping.
4.17 Engine Shut-down

Throttle .. Idle
Parking brake ..Set
Turbo charger cool-down (ROTAX 914 engine) min. 30 seconds
Second fuel pump (if installed) ... OFF
Avionics/Radio/Intercom/Lights (except ACL / Strobe) OFF
Both MAG switches ... OFF
ACL / Strobe (if installed) ... OFF
FAN .. activate if required
Master switch .. OFF and key removed

4.18 Parking

➢ Install rotor lash bag
➢ Secure gyroplane against rolling using parking brake and chocks, if parked on a slope
➢ Double check to have master switched OFF and keys removed
➢ Install protection cover

CAUTION

Especially in strong winds operate canopy with nose pointed into the wind to eliminate the risk that the canopy is blown open or shut.

4.19 Special Procedure: Short Field Take-off

A short field take off is conducted in exactly the same manner as a normal take-off, but performed with maximum precision. Therefore, a short field take-off is not so much a procedural thing, but needs practice, experience and mentoring. Apart from environmental aspects such as wind and density altitude, the condition of the gyroplane and its gross weight, the key factors for a short take-off performance are:

➢ Maximum allowed pre-rotation RPM and no time lost until stick is fully aft and brake is released
➢ Maximum take-off power is set immediately while stick remains fully aft until nose wheel rises
➢ Nose wheel held tight above surface and minimum side drift until lift-off
➢ No over controlling that would result in the nose swinging up and down
➢ \(V_Y \) climb with no side slip

4.20 Special Procedure: Slow Speed Sink and Recovery

➢ Reduce power to idle and let speed decrease by gently using aft control stick
➢ Maintain enough forward speed for sufficient rudder effectivity
➢ Rudder will regain effectivity quickly as soon as airspeed or propeller thrust is increased
➢ To recover, let nose drop slightly below the horizon and build-up air speed while adding power at the same time
4.21 Training Engine In-flight Shut-down and Air Restart

The engine should not be stopped in flight deliberately except as part of forced landing training under the supervision of a qualified flight instructor. If possible, allow the engine to cool down at 3000 rpm for about 30 sec before turning it off.

Make sure both magnetos are switched back ON and the master switch/starter key has been turned to OFF and back to ON to be prepared for an immediate engine start-up in case the manoeuvre has to be aborted.

NOTE

Be aware of reduced rudder effectivity with standing propeller. Be prepared to use larger pedal input and more left pedal than usual to keep gyroplane aligned.

After a restart, allow engine and oil to warm-up, if possible, before full power is applied.

4.22 Noise Abatement

A positive attitude towards residents and environmental-friendly flying supports the reputation and acceptance of aviation in general, and gyroplanes in particular. When compared to other airplanes the noise of a gyroplane is sometimes perceived as unpleasant although it meets the same or sometimes more stringent noise emission requirements. This effect can be attributed to the pusher concept where the propeller is exposed to air flow which was distorted by the fuselage. The degree of distortion, and therefore the noise emission of the propeller, is significantly lower at reduced speeds. The best practices to keep noise level low and general acceptance high are:

- Climb with the speed for best rate of climb \(V_Y \) as soon as altitude permits
- Especially in climb keep side slip to a minimum to establish a clean configuration. In addition, this guarantees the best climb performance.
- For your own safety always maintain safe altitude and avoid unnecessary ‘low-flying’
- When overflying populated areas, look ahead and select the least noise sensitive route
- Repetitive noise is far more irritating than a single occurrence. If you must fly over the same area more than once, vary your flight path
- Avoid blade slap. Blade slap can occur as a result of inadequate piloting technique or during aggressive manoeuvres, but will not appear in normal flight regime

NOTE

Above procedures do not apply where they would conflict with Air Traffic Control, within the traffic pattern, or when, according to pilot’s judgement, they would result in an unsafe flight path.
CONTENTS

5.1 Demonstrated Operating Temperature .. 5-1
5.2 Airspeed Calibration .. 5-1
5.3 Height-Velocity Diagram .. 5-2
5.4 Speeds ... 5-3
5.5 Rate of Climb ... 5-3
5.6 Take-off and Landing Data ... 5-3
5.7 Glide Ratio .. 5-3
5.8 Additional Performance Data ... 5-4
 5.8.1 Fuel Flow ... 5-4
 5.8.2 Service Ceiling ... 5-4
5.9 Sound Exposure Level / Noise Characteristics ... 5-4
INTENTIONALLY LEFT BLANK
SECTION 5 - PERFORMANCE

The following data were determined by flight testing and demonstrated with average piloting skills, with engine and aircraft in good condition, as well as clean main rotor and propeller. The parameters apply to standard conditions (15°C at sea level and standard pressure) and a gross mass of 450 kg. Note that a higher airfield elevation, increased temperature and/or low air pressure will have a negative effect on performance.

5.1 Demonstrated Operating Temperature

Satisfactory engine cooling has been demonstrated to an outside air temperature of 40 °C.

5.2 Airspeed Calibration

![Airspeed Calibration Graph](image)
5.3 Height-Velocity Diagram

The H/V diagram indicates combinations of height and speed (avoid area left side of the red graph) where a safe landing may not be possible in case of an engine failure. Therefore, take-offs and landings should be conducted according to the recommended flight profile, provided as blue dashed line.
5.4 Speeds

The following speeds are relevant for flight performance. For additional speed limitations refer to SECTION 2 LIMITATIONS of this manual.

Minimum horizontal speed, TOP (only ROTAX 914)40 km/h IAS
Minimum horizontal speed, TOP ...45 km/h IAS
Minimum horizontal speed, MCP...50 km/h IAS
Speed for best angle of climb V_x ...80 km/h IAS
Speed for best rate of climb or maximum endurance V_y...............90 km/h IAS
Best range speed...130 km/h IAS
Long range speed*...140 km/h IAS

* Long range speed is the speed faster than the best range speed which results in a slightly lesser range but represents a good compromise between range and saved air time.

5.5 Rate of Climb

Rate of climb, 450 kg, V_y, MCP... 4 m/s
Rate of climb, 360 kg, V_y, MCP... 6 m/s

5.6 Take-off and Landing Data

Take-offs and landings have been demonstrated up to a crosswind component of 36 km/h. The following data is valid for operation at a gross mass of 450 kg at an even air strip with short grass, no wind, and pre-rotation to 220 RPM. Take-off and landing distances account for a 15m obstacle.

Take-off roll* ... 80 – 120 m
Take-off distance* ... 300 m

* Take-off roll and take-off distance will be shorter using the boost regime of the ROTAX 914 engine

Landing roll ... 0 – 20 m
Landing distance ... 150 m

5.7 Glide Ratio

In case of an engine failure, expect a glide ratio of 1:3 which corresponds to a vertical distance of 900m or 0.5 nautical miles for each 1000ft.
5.8 Additional Performance Data

5.8.1 Fuel Flow

The following fuel flow figures are provided as estimates and do not constitute certified performance. Exact fuel flow will vary with environmental conditions, cleanliness of propeller and rotor, piloting technique (minimum side slip), and power setting. For additional procedures about proper power setting consult SECTION 9 for supplemental data concerning the variable pitch propeller, if installed.

Fuel flow at 130 km/h IAS...13 l/h
Fuel flow at 160 km/h IAS...18 l/h

5.8.2 Service Ceiling

The service ceiling is based on 450 kg take-off weight, maximum continuous power, and a residual climb gradient of 0.5 m/s.

ROTAX 912 ULS...8500 ft
ROTAX 914 UL..13000 ft

5.9 Sound Exposure Level / Noise Characteristics

The noise certificate was granted according to the German requirements for noise protection for microlight gyroplanes (“Lärmschutzverordnung für Ultraleichte Tragschrauber”) stating an overfly noise of 68 dB or less.
CONTENTS

6.1 General ...6-1
6.2 Weight and Balance Record ..6-1
6.3 Compliance with Weight and Balance ...6-1
SECTION 6 - WEIGHT AND BALANCE

6.1 General
The gyroplane must be operated within the weight and balance limits as specified in SECTION 2 of this manual. Loading situations outside these limits can result in restricted flight control and can ultimately lead to degraded safety.

6.2 Weight and Balance Record
An initial weighing report and equipment list showing gyroplane configuration, empty weight and centre of gravity is delivered with each gyroplane. This data applies to the gyroplane as delivered from the factory. Any changes in the configuration should be performed by a qualified maintenance station and documented. After modifications and at regular intervals a new weighing report and equipment list should be issued.

6.3 Compliance with Weight and Balance
The Calidus gyroplane is designed in such way that compliance with weight and balance is provided, if

- the gyroplane is loaded within the individual weight limitations for each station as provided in SECTION 2 of this manual, and
- the certified maximum take-off weight, representing the total sum of pilot, passenger, baggage, fuel and current empty weight is not exceeded.
INTENTIONALLY LEFT BLANK
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>7-1</td>
</tr>
<tr>
<td>7.2</td>
<td>Airframe and Undercarriage</td>
<td>7-1</td>
</tr>
<tr>
<td>7.3</td>
<td>Doors, Windows and Exits</td>
<td>7-1</td>
</tr>
<tr>
<td>7.4</td>
<td>Fuel System</td>
<td>7-1</td>
</tr>
<tr>
<td>7.5</td>
<td>Pneumatic System</td>
<td>7-3</td>
</tr>
<tr>
<td>7.6</td>
<td>Power Plant</td>
<td>7-4</td>
</tr>
<tr>
<td>7.7</td>
<td>Propeller</td>
<td>7-4</td>
</tr>
<tr>
<td>7.8</td>
<td>Rotor System</td>
<td>7-4</td>
</tr>
<tr>
<td>7.9</td>
<td>Vibration Damping</td>
<td>7-5</td>
</tr>
<tr>
<td>7.10</td>
<td>Flight Controls</td>
<td>7-5</td>
</tr>
<tr>
<td>7.11</td>
<td>Electrical System</td>
<td>7-7</td>
</tr>
<tr>
<td>7.12</td>
<td>Lighting System</td>
<td>7-7</td>
</tr>
<tr>
<td>7.13</td>
<td>Instrument Panel</td>
<td>7-7</td>
</tr>
<tr>
<td>7.14</td>
<td>Intercom</td>
<td>7-12</td>
</tr>
<tr>
<td>7.15</td>
<td>Pitot Static</td>
<td>7-12</td>
</tr>
<tr>
<td>7.16</td>
<td>Indicators and Sensors</td>
<td>7-12</td>
</tr>
<tr>
<td>7.17</td>
<td>Seats and Seatbelts</td>
<td>7-12</td>
</tr>
<tr>
<td>7.18</td>
<td>Stowage Capacity</td>
<td>7-12</td>
</tr>
</tbody>
</table>
INTENTIONALLY LEFT BLANK
SECTION 7 - SYSTEM DESCRIPTION

7.1 Introduction
This section contains the description of the gyroplane and its standard systems and equipment. Optional equipment is described in Chapter 9 of this manual.

7.2 Airframe and Undercarriage
The load carrying structure of the gyroplane consists of a composite monocoque occupant enclosure, bolted to an inert-gas welded stainless steel tube framework including tower and aft extension. The composite structure and main frame carries all loads induced by the crew stations, engine, rotor, undercarriage, stabilizer, and serves as installation platform for additional equipment.

Stabilizer structure with rudder is made of GRP (or in certain cases CRP) and is bolted to the aft extension of the main frame. Attachment points for the engine installation are provided by a steel tube ring mount at the rear of the mast, which also supports the rotor at its top end.

The landing gear consists of a steerable nose wheel in a steel fork and two main wheels with hydraulic brake system. Both main wheels are equipped with wheel pants made from GRP and are mounted to the ends of the spring spar, which is made from GRP. The spar is designed to absorb even higher than normal landing loads in case of a hard landing or crash.

7.3 Doors, Windows and Exits
This gyroplane features one large undivided glazed canopy which is hinged at its left hand side and has a locking mechanism on the right hand side. The locking mechanism can be operated from the inside and outside by turning the aluminium lever. The canopy is properly locked when the detent interlocks with the locking pin bushing and the lever is parallel to the canopy frame. Note that a firm force is needed to ensure the detent interlocks fully in order to lock the canopy properly.

Two adjustable fresh air vents on the right hand side and one sliding window with pivoting vent are provided for ventilation. The sliding window can be used as viewing hatch in case of emergencies and is wide enough to reach through with a hand.

The gyroplane is embarked and disembarked from the right hand side while the canopy is held open by a restraint strap. In case the canopy cannot be opened, use the emergency hammer located at the left hand side of the pilot station to break the Plexiglas and evacuate.

7.4 Fuel System
The fuel system consists of one or two tanks, a single filler port, fuel and ventilation lines, fuel level indication system, and drain. The filler port is located at the left hand side of the gyroplane. In order to open the filler cap, lift, then turn the flap, and pull out. Reverse to close cap. The cap is retained to the aircraft via a security cable.

The main tank is installed below the aft seat in the left hand side and has a capacity of 39 litres. Fuel level is indicated by a transparent sight line with markings and also by a fuel quantity indicator in the cockpit.
As an option an additional tank with a capacity of 36 litres and may be fitted on the right hand side. In this case a crossover line connects both to ensure equal level. In order to top-off tanks it is recommended to fill-up slowly and to allow flow levels to balance-out as the cross-over flow rate is limited.

Both tanks are ventilated by a ventilation line above the tanks into the rear of the mast. Fuel hoses are made of fabric-reinforced rubber.

As an option, low fuel sensors may be installed. The LOW FUEL warning light is triggered as soon as 5 litres or less of useable fuel remain in the tank.

The fuel system versions differ with engine model, see schematics below.
7.5 Pneumatic System

Aircraft trim, rotor brake and activation of the pre-rotator is controlled by a pneumatic system, consisting of an electrically driven air compressor with dry cartridge, a pressure gauge in the cockpit, solenoid valves, air lines, pneumatic actuators, and the respective cockpit controls.

Trim function

Trimming is effected by varying trim pressure in the pneumatic trim actuator which is installed in parallel with the rotor head tilt for pitch control. Aft or nose-up trimming activates the electrical compressor and increases trim pressure, causing the actuator to retract, and tilting the rotor disc aft. Forward trimming opens the pressure relief valve to reduce trim pressure and allows the rotor disc to flatten, due to the spindle head offset and the gyroplane’s weight. The actual trim condition is indicated on the trim/brake pressure gauge in the centre panel of the cockpit.

Lateral/roll trim is available as an option and works accordingly, using a lateral pneumatic trim cylinder. With this option installed, lateral trim condition is indicated by a LED bar on the instrument panel.

Rotor brake

With the pneumatic mode selector in BRAKE position the operation of the pneumatic trim actuator is reversed so that increased pressure causes the actuator to push the rotor head up (or level) and presses a brake pad against the rotor head disc. In order to increase brake pressure, move the 4-way trim switch to aft. Note that this action will also push the control stick forward. At full brake pressure the control stick will be maintained in its full forward position.

Activation of the pre-rotator

The pre-rotator is activated as long as the respective switch on the control stick head is depressed provided the following pre-conditions are met:

- pneumatic mode selector set to FLIGHT
- control stick in full forward position
- “Canopy” light OFF (if installed)

When activated the pneumatic clutch is activated and engine torque is transmitted through a 90° gearbox and drive to the pinion which is engaged by another small pneumatic actuator into the geared ring of the rotor head. The drive pinion is sliding on a helical gear to provide automatic lock-out in case of rotor RPM overrun. In order to allow necessary changes in length both pre-rotator drive shafts feature a sliding sleeve coupling.

Activation of the pre-rotator in BRAKE position

The pre-rotator can be activated in BRAKE position to park the rotor blades fore-aft for taxi. To do so, the pre-rotator switch and the overdrive/override switch in the cockpit panel have to be pressed simultaneously. Avoid prolonged activation of the pre-rotator with rotor brake engaged.
7.6 Power Plant

Engine

There are two engine variants available, being the ROTAX 912 ULS normally aspirated reciprocating engine and the ROTAX 914 UL turbo charged version. Both engine types are 4 cylinder, horizontally opposed, 4 stroke engines featuring

- Liquid cooled cylinder heads
- Ram air cooled cylinders
- Dry sump forced lubrication
- Dual breakerless capacitor discharge ignition
- 2 constant depression carburettors
- Hydraulic tappets
- Electric starter
- Generator (Alternator)
- Reduction gearbox with integrated shock absorber and overload clutch

The ROTAX 912 ULS engine provides a maximum take-off power of 100 horse power while the turbo charged version offers a maximum take-off power of 115 horse power. For technical details refer to the engine manufacturer’s manual.

Oil system

The oil reservoir with dipstick is accessed through a cover on the right hand side of the fuselage. The cover is held by 3 cam lock fasteners which can be locked or unlocked by a quarter turn. The type of lubrication system requires a special procedure for accurate oil level checking and to prevent overfilling, which is described in SECTION 8 of this manual.

Engine cooling

Engine cooling is provided by ram air cooled cylinders and liquid cooled cylinder heads. Therefore, cylinder head temperature (CHT) indication in the cockpit corresponds to water temperature. Sufficient cooling air flow is provided by a ram air duct. The water cooling system comprises of engine driven pump, radiator with thermo-activated electrical blower fan, expansion tank with radiator cap, overflow bottle, and hoses.

A single, large area radiator is mounted above the engine so that cooling air from the ram air duct passes through the cooler, is directed around the engine’s cylinders, and finally escapes through an opening at the lower rear end of the engine cowling. Force cooling is ensured by an electrically driven ducted fan controlled by a thermo switch. A push button in the cockpit allows manual activation temporarily which is typically used to avoid possible heat build-up after shut-down.

For the relevant checking and replenishing procedures, refer to SECTION 8 of this manual and also the engine manufacturer’s manual.

7.7 Propeller

A three-bladed, fixed pitch propeller with aluminium hub is used as standard version. The propeller blades are made from composite material with a foam core. As an option a variable pitch propeller is available which is described in SECTION 9 of this manual.

7.8 Rotor System

The two-bladed, semi-rigid, teetering rotor system comprises high-strength aluminium extruded rotor blades, a hub bar, and a common teeter hinge assembly.
The rotor blades feature an aerodynamic profile especially suitable for rotorcraft which, in combination with its relative centre of gravity, provides aerodynamic stability by eliminating negative blade pitching moments and flutter tendency. The hollow blade profile is sealed at both ends by plastic blade caps.

The aluminium rotor hub bar is pre-coned to the natural coning angle of the blades and connects the blades firmly to each side using 6 fitting bolts and a clamping profile. In order to compensate for asymmetric air flow in forward flight the blades are free to teeter. The hinge assembly consists of teeter tower, teeter bolt and teeter block.

The teeter bolt runs in a long Teflon coated bushing in the teeter block (main bearing action), as well as two shorter bushings in the teeter tower (emergency bearing action). The main bearing action is supported by special grease which is applied through a grease nipple on top of the teeter block. Servicing is described in SECTION 8 of this manual.

7.9 Vibration Damping

A certain level of vibration is inherent to any 2-bladed rotor system. In order to reduce vibration levels to a minimum, a vibration decoupling element in the rotor mast isolates rotor vibration from the fuselage.

7.10 Flight Controls

Rotor head and trim control

Pitch and roll of the gyroplane are controlled by tilting the complete rotor head by means of the control stick. Control input is transferred via torsion tube and linkage running below the seats to the base link and from there to the rotor head via push-pull control cables.

The control stick head is ergonomically shaped to fit the pilot’s right hand and features control buttons for radio transmission (1), a four-way trim function (2), and activation of the pre-rotator (3).

The trim control works as a classical 4-way beep switch. Pulling the beep switch back increases aft trim or nose-up tendency, while pushing the switch forward reduces back trim pressure, leading to a nose-down tendency. Roll trim (if installed) is effected by pushing the trim switch to the respective side.

Because of a safety circuit, activation of the pre-rotator is only possible with the pneumatic mode selector in FLIGHT position and the control stick fully forward. This prevents inadvertent activation of the pre-rotator during flight or in BRAKE mode.

The aft stick is held by means of 2 bolts, self-locking nuts and a pair of distance washers within a bracket and must be removed unless the seat is occupied by a qualified flight instructor.
Rudder and front wheel control

The Rudder is connected to the foot pedals with steel cables which are routed horizontally along the main frame. Both pairs of pedals are interconnected by a linkage. The nose wheel steering is directly linked to pedal/rudder control input by control rods.

Throttle and brake quadrant

The throttle and brake quadrant with choke is located on the left side of the pilot station. Throttle control (1) is conventional with IDLE in aft (or pulled) and full throttle in most forward position. With the ROTAX 914 UL engine the boost range is entered by overcoming a small resistance to the front. The throttle lever is linked with cable controls to the carburettors. A mechanical spring applies tension to the control cables and brings the carburettors to full throttle in case of a cable break. The throttle lever has a pre-set friction brake which holds the throttle in the selected position.

Choke (3) is used start a cold engine. In order to do so, pull the choke lever fully to the rear or ON position and be sure to have the throttle in idle position. After starting the engine and a short warm-up, the choke can be slowly disengaged by moving the lever into its forward or OFF position.

The hydraulic wheel brake is actuated by pulling the brake lever (2). A locking pawl mechanism allows setting for use as parking brake. In order to release the parking brake pull the brake lever a little further to let the spring-loaded locking pawl disengage, and then release wheel brake.

Do not try to disengage the locking pawl by pressing the small release lever without pulling the brake lever at the same time. Releasing the pawl using the small release lever only will lead to premature deterioration of the teeth. If the teeth are worn the function of the parking brake will be compromised!

The throttle and brake quadrant also supports the brake fluid reservoir (4) with screw cap and fluid level minimum and maximum markings, as well as the primary brake cylinder (5).
7.11 Electrical System

The 12V DC electrical system consists of an engine driven electrical generator, a battery, master switch, indicators, switches, electrical consumers, and cabling. With the ROTAX 914 UL engine an electrical power supply is vital for continued engine operation as this engine variant solely relies on electrically driven fuel pumps.

Turning the master switch to the ON position closes the battery contact and energizes the gyroplane’s electrical system. The red LOW VOLT warning light will illuminate briefly as a functional check. A steady indication, however, warns the pilot that the voltage of the system has dropped below a safe value. In this case a safety circuit (load shedding relay) will automatically disable the aircraft lights and the 12V power receptacle.

A red GEN warning light is installed to indicate that the battery is not being charged.

7.12 Lighting System

The aircraft is approved for day VFR operation only. Position lights, landing light and strobes are available as optional equipment. If installed, refer to SECTION 9 of this manual.

7.13 Instrument Panel

Different instrument panel layouts are available. The basic instrumentation arrangements include:

- Standard Layout
- Moving Map Landscape
- Moving Map Portrait
- Glass Cockpit

The standard layout includes all instruments necessary for flight but also installation provisions for additional conventional instrumentation.

The panel layouts Moving Map Landscape or Portrait include all relevant instruments arranged in a way to accept most off-the-shelf moving map navigation devices in the respective format. For detailed user information and instructions concerning the different moving map systems please refer to the manufacturer’s documentation.

NOTE

Any moving map system shall be used for reference only and does not replace proper flight planning and constant oversight and awareness.

The Glass Cockpit layout is tailored to the integrated flight and navigation suite DYNON AVIONICS SkyView. In addition to navigational and moving map functions, the system provides primary flight data and engine/vehicle monitoring. It is of utmost importance to read and understand the operators manual and to become familiar with the system before operation. In case of a system failure, a 2 ¼" (47mm) altimeter, air speed indicator and rotor speed indicator are provided as back-up instrumentation.

Depending on the chosen instrumentation and optional equipment, the depicted panels on the following pages may vary.
Panel Layout - Standard

1 – VPP control and fuse (if installed)
2 – Pneumatic mode selector
3 – Trim/brake pressure gauge
4 – Engine RPM
5 – Manifold pressure gauge (if inst.)
6 – Rotor RPM
7 – Canopy warning light
8 – Oil pressure
9 – Fire warning light
10 – Oil temperature
11 – Compass (card type option)
12 – Cylinder head temperature
13 – Lateral trim indicator (if installed)
14 – Fuel level indicator
15 – Low fuel warning light (if installed)
16 – Intercom/headphone sockets
17 – Overdrive push button
18 – Altimeter
19 – Air speed indicator
20 – Radio (if installed)
21 – ATC transponder (if installed)
22 – Vertical speed indicator (if installed)
23 – 12V power receptacle (if installed)
24 – Cooling fan manual activation
25 – Cabin heat control (if installed)
26 – GEN, FAN, LOW VOLT warning lights
27 – BOOST Warn + Caution light (R914)
28 – Avionics master switch
29 – Switches (2nd fuel pump and options)
30 – MAG switches
31 – Hour meter
32 – Master/starter switch
33 – Rotor bearing temperature indication
34 – Fuses
Panel Layout – Moving Map Landscape

1 – VPP control and fuse (if installed) 17 – Installation provisions for MMS
2 – Engine RPM 18 – Radio (if installed)
3 – Pneumatic mode selector 19 – ATC transponder (if installed)
4 – Rotor RPM 20 – Fuel level indicator
5 – Canopy warning light 21 – 12V power receptacle (if installed)
6 – Air speed indicator 22 – Cooling fan manual activation
7 – Lateral trim indicator (if installed) 23 – Cabin heat control (if installed)
8 – Altimeter 24 – GEN, FAN, LOW VOLT warning lights
9 – Fire warning light 25 – BOOST Warn + Caution light (R914)
10 – Oil pressure 26 – Avionics master switch
11 – Trim/brake pressure gauge 27 – Switches (2nd fuel pump and options)
12 – Oil temperature 28 – MAG switches
13 – Cylinder head temperature 29 – Hour meter
14 – Intercom/headphone sockets 30 – Master/starter switch
15 – Overdrive push button 31 – Rotor bearing temperature indication
16 – VSI 2 ¼” (47mm) (if installed) 32 – Fuses
Panel Layout – Moving Map Portrait (Garmin 695)

1 – 12V power receptacle (if installed)
2 – Engine RPM
3 – Overdrive push button
4 – Rotor RPM
5 – Altimeter
6 – MMS
7 – Canopy warning light
8 – Lateral trim indicator (if installed)
9 – Fire warning light
10 – MMS frame
11 – Air speed indicator
12 – Manifold pressure gauge (if inst.)
13 – Low fuel warning light (if installed)
14 – Fuel level indicator
15 – Cooling fan manual activation
16 – Intercom/headphone sockets
17 – VPP control and fuse (if installed)
18 – Pneumatic mode selector
19 – Trim/brake pressure gauge
20 – Radio (if installed)
21 – ATC transponder (if installed)
22 – Oil pressure
23 – Oil temperature
24 – Cylinder head temperature
25 – Cabin heat control (if installed)
26 – GEN, FAN, LOW VOLT warning lights
27 – BOOST Warn + Caution light (R914)
28 – Avionics master switch
29 – Switches (2nd fuel pump and options)
30 – MAG switches
31 – Hour meter
32 – Master/starter switch
33 – Rotor bearing temperature indication
34 – Fuses
Panel Layout – Glass Cockpit (DYNON AVIONICS SkyView.)

1 – VPP control and fuse (if installed)
2 – Back-up altimeter
3 – Overdrive push button
4 – Canopy warning light
5 – Fire warning light
6 – Low fuel warning light (if installed)
7 – Integrated display warning light
8 – Rotor RPM
9 – DYNON Integrated Display
10 – Lateral trim indicator (if installed)
11 – Back-up air speed indicator
12 – 12V power receptacle (if installed)
13 – Cooling fan manual activation
14 – Intercom/headphone sockets
15 – Pneumatic mode selector
16 – Radio (if installed)
17 – ATC transponder (if installed)
18 – Trim/brake pressure gauge
19 – Cabin heat control (if installed)
20 – GEN, FAN, LOW VOLT warning lights
21 – BOOST Warn + Caution light (R914)
22 – Avionics master switch
23 – Switches (2nd fuel pump and options)
24 – MAG switches
25 – Hour meter
26 – Master/starter switch
27 – Rotor bearing temperature indication
28 – Fuses
7.14 Intercom

The standard intercom system features standard headset sockets (TSR Tip Ring Sleeve) with additional XLR-3 socket for active headset power supply. Sockets are provided in each station, on the left hand side of the pilots respectively co-pilots seat. The intercom amplifier and VOX control is integrated in the respective radio. See manufacturer’s manual for additional information.

7.15 Pitot Static

Total pressure is picked up by a pitot type tube located in the nose section of the fuselage. The tube is connected to the integrated cockpit instruments by a plastic line. The static pressure is measured across two ports, one on either side of the fuselage.

7.16 Indicators and Sensors

Rotor speed is measured by a magnetic pick-up, located directly at the geared ring of the rotor head. Rotor bearing temperature is measured by a temperature sensor which is battery powered.

Other indicators and sensors have been described in the respective paragraphs. For engine related indicators and sensors see the engine manufacturer’s manual.

7.17 Seats and Seatbelts

The seats consist of seating surface as an integral part of the monocoque structure and backrest, upholstered with removable cushions. The cushions consist of a foam core covered with an easily cleanable, water-repellent fabric.

The forward backrest hinges are positioned by 4 countersunk allen bolts on two seating rails. To suit to different leg lengths the backrest hinges can be adjusted by removing the allen bolts and refitting in a different position on the rails.

In addition the backrest can be adjusted by modifying the lengths of the two adjustment straps. When adjusting make sure that full travel of the aft control stick is not restricted, if installed. The aft seat has no adjustment.

An adjustable four point harness is fitted for each seat. Make sure that the aft seat belt is buckled and tight when flying with the aft seat unoccupied.

7.18 Stowage Capacity

Two storage compartments are located below each seat with a maximum capacity of 2.5 kg each.
CONTENTS

8.1 Maintenance Obligations ... 8-1
8.2 General .. 8-1
8.3 Ground Handling .. 8-2
8.4 Cleaning .. 8-2
8.5 Refuelling ... 8-2
8.6 Checking of Engine Oil Level ... 8-2
8.7 Checking of Engine Coolant Level .. 8-3
8.8 Tire Pressure ... 8-3
8.9 Lubrication and Greasing .. 8-3
8.10 Replenishing of Fluids ... 8-4
 8.10.1 Engine oil .. 8-4
 8.10.2 Engine coolant .. 8-4
8.11 Engine Air Filter ... 8-4
8.12 Propeller ... 8-4
8.13 Battery .. 8-4
8.14 Winter Operation .. 8-4
8.15 Removal, Disassembly, Assembly and Installation of the Rotor 8-5
 8.15.1 Removal of the Rotor System .. 8-5
 8.15.2 Disassembly of the Rotor System ... 8-6
 8.15.3 Assembly of the Rotor System ... 8-7
 8.15.4 Installation of the Rotor System ... 8-8
8.16 Road Transport ... 8-8
8.17 Repairs ... 8-9
INTENTIONALLY LEFT BLANK
SECTION 8 - HANDLING AND SERVICING

This chapter contains guidelines for correct handling and servicing of the gyroplane, as well as manufacturer recommendations helping to keep its performance, reliability and value.

8.1 Maintenance Obligations

According to the German law the owner/operator is responsible to ensure that the aircraft is properly maintained by an authorized facility and continued airworthiness is asserted by a qualified inspector. The supervision of this process has been delegated by the National Authority to the DULV (Deutscher Ultraleichtflugverband e.V.).

All airworthiness limitations, inspections and time limits are described in detail in the maintenance manual. However, for owner/operator’s information the intervals for mandatory maintenance events are provided as follows:

- 25 h: “25 h inspection”, then every
- 100 h / 12 months (whatever occurs first): “100 h inspection”
- 12 months: Annual airworthiness review (JNP, Jahresnachprüfung)

For engine maintenance and overhaul, refer to the engine manufacturer’s manual.

Special inspections have to be performed by an authorized and qualified maintenance centre or the manufacturer after operational incidents, which are

- Hard landing
- Bird strike
- Rotor contact with obstacle
- Propeller contact with obstacle or external impact
- Lightning strike
- Encounter of strong gusts with the risk of overstressing
- Rotor overspeed

If any of the above cases apply, mark the aircraft as ‘unserviceable’ and consult the manufacturer or an authorized maintenance and repair station before further operation.

Apart from these obligatory inspections and maintenance tasks, the owner/operator is entitled to perform the following preventive and in-between maintenance tasks and checks, as well as exchange of parts and minor repairs:

8.2 General

Whenever possible, park the gyroplane in a place where it is protected from direct sunlight, wind and humidity. High humidity, especially in combination with a salt-laden atmosphere will lead to corrosion. The sunlight’s ultra-violet radiation and the heat impact on the GRP/CRP components may lead to a degradation of the materials integrity. The manufacturer will take no responsibility for damage or impaired safety margin due to improper treatment.
8.3 Ground Handling

Experience shows that aircraft may be exposed to much higher loads when operated on ground, than when in flight. Such loads caused by rumbling on rough terrain, or bouncing the aircraft over the hangar threshold may easily exceed the design load in peak.

Use caution when handling the gyroplane on ground. Do not push at the rudder or at the outer stabilizers. Avoid excessive swing of the rotor blades as repeated bending ultimately leads to fatigue or damage.

8.4 Cleaning

Care and regular cleaning of engine, propeller, rotor system and fuselage is the basic foundation for airworthiness and reliability. Therefore, the gyroplane should be cleaned after every last flight of the day or more often, if environmental conditions dictate.

In order to protect the gyroplane against dirt, dust, bird soil, and sunlight, the aircraft should be covered with a light plastic tarpaulin or cloth. Openings to the engine, service access port and airspeed indicator should be closed after the flight (insects, birds etc.).

Contamination can be cleaned with clean water, possibly with mild cleaning additives. To clean the rotor it is best to soak contamination with a cloth or towel, wipe with soft or micro-fibre cloth, and rinse thoroughly with water.

CAUTION

Do not use gasoline or solvents as cleaning agents for the windshields, as it will destroy them irreparably. Do not let windshields sun-dry after washing as they will stain permanently.

8.5 Refuelling

Have aircraft grounded before refuelling. Be aware that most airfield refuelling equipment is laid out for larger diameter tank filler necks and high flow rates. To avoid contamination, use a funnel with strainer and/or filter when refuelling from canisters. In case of two fuel tanks installed, a crossover line connects both to ensure equal level. In order to top-off tanks it is recommended to fill-up slowly and to allow flow levels to balance-out as the cross-over flow rate is limited.

NOTE

Do not fill to the absolute maximum in order to allow for thermal expansion of the fuel.

8.6 Checking of Engine Oil Level

Before attempting to check the engine oil level double check that both Magnetos are switched off. The oil level is measured with the aircraft in a level attitude and should be between the marks on the dipstick.
Open oil tank access cover, remove oil reservoir cap and dipstick. Turn the engine by the propeller in the correct sense of rotation until you clearly hear the oil gurgle in the tank.

Insert cleaned dipstick for measurement. Fill up oil according to the engine manufacturer’s specification when required. After completion make sure the dip stick is in place and the reservoir cap is back on securely. Install access cover.

CAUTION

Never attempt to turn the engine against its sense of rotation as this may lead to damage.

8.7 Checking of Engine Coolant Level

Between flights, the engine coolant level is checked by verifying the level in the overflow bottle is within min. and max. markings. The coolant level can be easily seen when looking at the transparent overflow bottle when the access cover is removed.

For additional details concerning this pre-flight check and a description of the more comprehensive daily check procedure, refer to the engine manufacturer’s manual.

8.8 Tire Pressure

<table>
<thead>
<tr>
<th>Component</th>
<th>Interval</th>
<th>Application</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main wheels</td>
<td></td>
<td></td>
<td>1.6 Bar</td>
</tr>
<tr>
<td>Nose wheel</td>
<td></td>
<td></td>
<td>1.4 Bar</td>
</tr>
</tbody>
</table>

8.9 Lubrication and Greasing

Between maintenance intervals the owner/operator is entitled to do the following lubrication and greasing:

<table>
<thead>
<tr>
<th>Component</th>
<th>Interval</th>
<th>Application</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teeter bolt</td>
<td>10 h</td>
<td>2 grams</td>
<td>AutoGyro S.WZ05</td>
</tr>
<tr>
<td>Pre-rotator drive coupling sleeves</td>
<td>as required</td>
<td>-</td>
<td>AutoGyro S.WZ04</td>
</tr>
</tbody>
</table>

CAUTION

Any signs of wear on the teeter tower due to movement of the teeter bolt head indicate a beginning of seizure of the teeter hinge. In most cases the phenomenon is caused by insufficient greasing.
8.10 Replenishing of Fluids

8.10.1 Engine oil
See engine manufacturer’s manual.

8.10.2 Engine coolant
See engine manufacturer’s manual. Engine cowling must be removed!

8.11 Engine Air Filter
The air intake filters need to be replaced or cleaned according to the manufacturer’s recommendation. Depending on environmental conditions, such as dust, sand, or pollution the recommended rate of maintenance should be increased as required. Engine cowling must be removed!

8.12 Propeller
Clean regularly as contamination will noticeably decrease its efficiency, resulting in a negative effect on both aircraft performance and noise emission. Use either pure water or add mild cleaning additives. Let contamination soak, then remove with a soft cloth or micro fibre material and rinse with enough water. Check for erosion and damage, especially at the leading edge and blade tips. Check tight fit at the propeller blade root or any unusual sound when tapping the blades, in case of a variable pitch propeller. If in doubt or if damage is obvious, consult the aircraft manufacturer or a qualified maintenance station.

8.13 Battery
The aircraft is fitted with a maintenance-free gel electrolyte battery. Maintenance is therefore limited to outside soundness, correct attachment, and cleaning. Check integrity of the battery as leaking fluid contains corrosive sulphuric acid which would lead to extensive damage when contacting the framework and attachments.

Charge the battery only with a charging device which is suitable for gel electrolyte batteries.

CAUTION

The battery must never be deep discharged, as it will be damaged. If so, it might need to be replaced.

8.14 Winter Operation
The cooling system for the cylinder heads of the engine is filled with a mixture of anti-freeze and water, which gives freezing protection down to -20°C. Check protection temperature of the coolant and add anti-freeze, if necessary.

If temperatures are expected to fall below protection temperature, drain the coolant, and if required for service, refill with pure antifreeze. As anti-freeze ages, renew the coolant every two years. Read the engine manual for the manufacturer’s recommendations.
During winter operations the necessary operating temperature for oil and cooling agent may not be reached. This can be compensated by taping some portion of the coolers. Monitor all engine temperatures closely after having the coolers taped and modify, if necessary.

When using heated clothing be aware of the electrical power demand in regard to the generator performance. Do not exceed the generator output value in order not to drain the battery. A loss of electric power affects avionics and radio communication and can lead to an engine failure.

Before each flight inspect all control cables for free and easy movement and sufficient lubrication.

8.15 Removal, Disassembly, Assembly and Installation of the Rotor

In order to transport or park the gyroplane with minimum space requirements, the rotor system can be removed and disassembled, if needed. In order to do so, a second person is needed to assist and help to prevent any damage to the gyroplane or the rotor system.

WARNING

The rotor system must be removed and disassembled for road transport. When handled incorrectly the rotor system can be damaged irreparably. If undetected this may have catastrophic consequences.

CAUTION

When removing or disassembling make sure to mark all parts so that each and every component of the rotor system is reassembled and installed in exactly the same way and orientation. Some rotor blades have loose washers in them which are required as balance weights. Do not remove or restrain if present!

8.15.1 Removal of the Rotor System

1. Secure the gyroplane on level ground by engaging the parking brake, adjust the rotor system lengthwise and pump up the rotor brake to its maximum.
2. Remove and discard split pin and unscrew the castellated nut (3). The rotor system has to tilted onto the black rotor teeter stop.
3. The teeter bolt (1) has to be extracted by using only the hand, not a hammer. If needed tilt the rotor blades carefully onto the teeter stop, in order to prevent the bolt from jamming. Make sure that the rotor stays level in the teeter axis, if not the teeter bolt will damage the Teflon coated bushes, while being pushed out.
4. A supervised second person has to hold the rotor system in flying direction.
5. Lift the rotor system carefully out of the teeter tower and be aware of the position of the shim washers (2). Their thicknesses may differ and it is essential that they are reinstalled on the correct side! They are marked with dots to identify the correct side.
6. Remove the rotor system to one side by letting it rest on your shoulder and take care not to collide with stabilizer or propeller.
7. The shim washers and the teeter block in the hub are marked on each side with one or two engraved dots. Directly after the disassembly the shim washers need to be fixed on their respective side with cable ties.

8. The rotor system must not be placed on a dirty or grainy surface, as the blades can scratch and damage easily. The best way is to place the rotor blades centrally onto two stands, supporting the rotor at approximately 2 m distance from the hub.

| 1 – Teeter bolt | 2 – Shim washers (2 ea.) | 3 – Outer washer | 4 – Split pin | 5 - Castellated nut |

Handling of the Rotor System

Do not lift or support the rotor system at its blade tips as the bending moment due to the weight of the hub assembly may overstress the blade roots. If possible, handle with two persons while holding approximately in the middle of each blade. When supporting the system use two stands each positioned in about 2 metres distance from the hub.

CAUTION

The assembled rotor system can be damaged irreparably if handled incorrectly. If the rotor system is lifted in a wrong way, its own weight may overstrain the material.

8.15.2 Disassembly of the Rotor System

1. To disassemble the rotor system, place it upside down onto a clean surface or stands to support the rotor at approximately 2 m from the hub.
2. Loosen locknuts (6) on the first blade by counter holding the corresponding bolt head to prevent it from turning inside the blade holes.
3. Push out all fitting bolts (4) without any force, but use no more than a gentle tapping if necessary. Tilt the rotor blade up and down to support easy removal of the bolt.
4. Carefully pull the rotor blade out of the hub (1) in radial direction and take off the clamping profile (2).
5. Repeat step 2 to 4 on second rotor blade.
6. Do not disassemble the rotor hub!
7. Store and transport rotor blades, clamping profile and rotor hub only in air cushion foil or using other suitable means to prevent bending or surface damage.

8.15.3 Assembly of the Rotor System

1. The rotor blades, clamping profile and rotor hub are labelled with an engraved serial number.
2. Insert the first rotor blade carefully into the clamping profile. Make sure that all serial numbers match.
3. Fit the rotor hub side with the according serial number to clamping profile and blade. Insert fitting bolts without using force so that the bolt end is on top when the rotor system is installed.
4. Position the washers and the locknut and hand-tighten all nuts.
5. Torque-tighten nuts with 15 Nm from the inside to the outside, using a torque wrench. When doing so, counter-hold bolts to prevent any damage the hub and blade holes.
6. Repeat steps 2 to 5 for the second rotor blade.
8.15.4 Installation of the Rotor System

CAUTION

During installation make sure to have each and every part of the rotor system installed in exactly the same way and orientation as it was before.

1. Secure the gyroplane on level ground by engaging parking brake, adjust the rotor head or teeter tower corresponding to fore-aft and pressurize the rotor brake up to maximum.
2. Check correct matching of parts: The rotor hub and the teeter tower are marked with two dots according to the orientation for installation.
3. Lift the rotor blade with a second briefed person (one person standing aft, one person standing directly in front of the hub).
4. Approach with the rotor system from the side to the gyroplane and make sure not to collide with propeller or stabilizer. Insert the rotor system into the hub from above while standing on a ladder or the rear seat.
5. The second person can let go, as soon as it is resting centrally in the teeter tower on the teeter stops.
6. Insert teeter bolt by hand in the same orientation as it was before (bolt head should be at that side of the teeter block which is marked with one dot) while matching the shim washers with the corresponding installation positions.
7. Check direction of assembly and shim washers: rotor hub, teeter tower and shim washers are marked on each side either with one or two engraved dots.
8. If the teeter bolt cannot be inserted, tilt the rotor blade along the teeter axis with the free hand.
9. Install washer and castellated nut. Hand-tighten only and secure with a new split pin. Use split pins only once. Make sure that the teeter bolt can be turned easily by hand.

8.16 Road Transport

If road transport cannot be avoided, transport with minimum fuel, which reduces airframe loads and prevents fuel spilling through vent pipes. Furthermore, it is recommended to wrap the gyroplane for road transportation. Especially the rotor blades need to be packed carefully, as even the smallest damages may force the replacement of the complete system.

WARNING

The rotor system must be removed and disassembled for road transport. When handled incorrectly the rotor system can be damaged irreparably. If undetected this may have catastrophic consequences.
8.17 Repairs

IMPORTANT NOTE

Repairs may only be executed by persons authorized by the manufacturer, and in strict compliance with maintenance and repair instructions.
INTENTIONALLY LEFT BLANK
SECTION 9 - SUPPLEMENTS

LIST OF SUPPLEMENTS

9-1 Variable Pitch Propeller - IVO
9-2 Lights
9-3 GPS/Moving Map Systems
9-4 Fire Indication
9-5 Canopy Indication
INTENTIONALLY LEFT BLANK
9-1 Variable Pitch Propeller - IVO

9-1.1 General
A variable pitch propeller (VPP) manufactured by IVO is available as optional equipment to optimize the propeller efficiency, fuel consumption, and noise in all flight regimes and power settings. This is achieved by changing the propeller pitch.

9-1.2 Limitations
No change to standard aircraft

9-1.3 Emergency Procedures
Proceed according to generic variable pitch propeller procedure provided in SECTION 3 for the standard aircraft.

9-1.4 Normal Procedures
9-1.4.1 Set Propeller to FINE
In order to set the propeller to ‘FINE’ for start-up, take-off and approach, use the following procedure:

- Press the rocker switch in direction FINE (forward or top position) until end position safety device (circuit breaker) pops out
- Notice pitch change motor buzz (engine off) or increase of engine RPM
- Wait 5 seconds before re-engagement of breaker

9-1.4.2 Adjust Propeller COARSE

- Adjust propeller pitch and throttle to match engine RPM and manifold pressure according to the power setting table below

CAUTION
When adjusting the propeller do not overtorque (i.e. too high MAP for given RPM) the engine as this may lead to overloading, reduced life time or possible damage.

NOTE
As a safety measure, the mechanical end stop in full COARSE position is chosen to allow a residual climb rate of 1 m/s in standard atmospheric conditions at sea level with a maximum gross weight of 450 kg.
9-1.5 Performance

ROTAX 912 ULS

<table>
<thead>
<tr>
<th>Power setting</th>
<th>Engine RPM</th>
<th>MAP</th>
<th>Fuel flow [l/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. TOP</td>
<td>5800</td>
<td>27.5</td>
<td>27</td>
</tr>
<tr>
<td>Max. MCP</td>
<td>5500</td>
<td>27.0</td>
<td>26</td>
</tr>
<tr>
<td>75% MCP</td>
<td>5000</td>
<td>26.0</td>
<td>20</td>
</tr>
<tr>
<td>65% MCP</td>
<td>4800</td>
<td>26.0</td>
<td>18</td>
</tr>
<tr>
<td>55% MCP</td>
<td>4300</td>
<td>24.0</td>
<td>14</td>
</tr>
</tbody>
</table>

ROTAX 914 UL

<table>
<thead>
<tr>
<th>Power setting</th>
<th>Engine RPM</th>
<th>MAP</th>
<th>Fuel flow [l/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. TOP</td>
<td>5800</td>
<td>39</td>
<td>33</td>
</tr>
<tr>
<td>Max. MCP</td>
<td>5500</td>
<td>35</td>
<td>26</td>
</tr>
<tr>
<td>75% MCP</td>
<td>5000</td>
<td>31</td>
<td>20</td>
</tr>
<tr>
<td>65% MCP</td>
<td>4800</td>
<td>29</td>
<td>17.5</td>
</tr>
<tr>
<td>55% MCP</td>
<td>4300</td>
<td>28</td>
<td>12.5</td>
</tr>
</tbody>
</table>

NOTE

Above data is valid for standard conditions at sea level. Keep in mind that engine and propeller performance is affected by altitude and temperature. For detailed information refer to the engine manufacturer’s and propeller manufacturer’s documentation.

9-1.6 Weight and Balance

No change to standard aircraft

9-1.7 System Description

The IVO variable pitch propeller is controlled by a spring-loaded rocker switch labelled FINE and COARSE. The switch is installed on the left side of the instrument panel. An automatic fuse is located beside the switch, serving as an end position safety device. Propeller pitch changes continuously as long as the rocker switch is depressed in the respective position. Note that there is no direct angle-of-incidence control or position feedback, besides the mechanical end stops.

Activation of the rocker switch closes an electrical circuit which energizes the electrical pitch control motor inside the propeller hub through brushes running on a collector ring. The electrical motor drives a mechanical gear which is connected to torsion tubes running inside
the propeller blades. Actual blade feathering motion is achieved by twisting the complete blade, without having the need for a pitch change bearing.

9-1.8 Handling and Servicing

Refer to the manufacturer's documentation.
INTENTIONALLY LEFT BLANK
9-2 Lights

9-2.1 General
Depending on customer’s configuration the gyroplane can be equipped with optional
- Landing lights
- Navigation /position lights
- Strobe lights

9-2.2 Limitations
No change to standard aircraft

9-2.3 Emergency Procedures
No change to standard aircraft

9-2.4 Normal Procedures
The lights can be switched on or off by respective switches in the centre panel, labelled
- “Light” for landing light
- “Nav” for navigation/position lights
- “Strobe” for strobe lights

Due to their small silhouette gyroplanes are easily overlooked, especially if approached directly from behind, such as on approach. It is therefore highly recommended that navigation and strobe lights are switched on during flight.

9-2.5 Performance
No change to standard aircraft

9-2.6 Weight and Balance
No change to standard aircraft

9-2.7 System Description
Navigation and strobe lights are installed as combined units at the left hand and right hand side of the fuselage, behind the passenger station. The landing light consists of a pair of lamps installed in the nose. Note that the conventional lights have a considerably higher power demand over those with LED technology. In case of generator or battery malfunction (“Gen” or “Low Volt” indication on) it is even more essential to switch these lights off in order to preserve electrical power.

9-2.8 Handling and Servicing
No change to standard aircraft
INTENTIONALLY LEFT BLANK
9-3 GPS/Moving Map Systems

9-3.1 General
Depending on customer’s configuration the gyroplane can be equipped with different GPS/Moving Map Systems as optional equipment.

NOTE
Any moving map system shall be used for reference only and does not replace proper flight planning and constant oversight and awareness.

9-3.2 through 9-3.6
No change to standard aircraft.

9-3.7 System Description
Refer to the manufacturer’s documentation.

9-3.8 Handling and Servicing
Refer to the manufacturer’s documentation.
SECTION 9-3
GPS/Moving Map Systems

INTENTIONALLY LEFT BLANK
9-4 Fire Indication

9-4.1 General
Depending on customer’s configuration the gyroplane can be equipped with an Fire indicator light to alert the pilot that the engine is on fire.

9-4.2 Limitations
No change to standard aircraft.

9-4.3 Emergency Procedures
Proceed according to emergency procedure ‘Smoke and Fire’ provided in SECTION 3 for the standard aircraft.

9-4.4 through 9-4.9
No change to standard aircraft
INTENTIONALLY LEFT BLANK
9-5 Canopy Indication

9-5.1 General
Depending on customer’s configuration the gyroplane can be equipped with an Canopy indicator light to alarm the pilot that the canopy is not properly locked.

9-5.2 Limitations
No change to standard aircraft.

9-5.3 Emergency Procedures
Proceed according to emergency procedure ‘Canopy Open in Flight’ provided in SECTION 3 for the standard aircraft.

9-5.4 through 9-5.6
No change to standard aircraft

9-5.7 System Description
The Canopy indication is controlled by a proximity switch at the canopy locking handle. If the canopy is not properly locked the ‘Canopy’ indication will illuminate and the pre-rotator will be deactivated.

9-5.8 Handling and Servicing
In case of faulty indication or flicker have readjustment performed by an authorized maintenance centre.
SECTION 10 - APPENDIX

LIST OF APPENDICES

Customer Feedback Form
Change of Ownership Form
Incident Reporting Form
INTENTIONALLY LEFT BLANK
Customer’s feedback is important to AutoGyro’s Technical Publication team.

This manual and all information herein have been compiled with greatest care and a maximum level of clarity, safety, and user-friendliness in mind. However, we welcome any comments, questions or suggestions that help us provide a higher quality of our documentation, services, and products.

All submitted feedback forms will be processed internally. We are committed to providing a response within ten working days of receipt.

Return this form to:
AutoGyro GmbH
Dornierstraße 14
31137 Hildesheim
or email to info@auto-gyro.com or fax +49 (0) 51 21 / 8 80 56-19

<table>
<thead>
<tr>
<th>Document</th>
<th>Issue/Version</th>
<th>Page / Chapter</th>
</tr>
</thead>
</table>

Product - specify type, year of manufacturing, and serial number (if applicable)

Other subject

Your feedback or error reporting - use extra sheets if needed and include a suggestion for correction or remedial action, if possible

Reported by

Email

Date

Below fields are used for AutoGyro internal processing – do not fill in!

| Investigation completed | Action and response | Internal reference |
This form is supplied to enable the new owner to register the change of ownership, so that he/she may receive any service or other information relating to the aircraft. The information is stored in a database and is only used within AutoGyro GmbH for the above purpose.

If the new owner does not register, then they will not be automatically updated, which may lead to unsafe flight or an un-airworthy aircraft.

Return this form to:
AutoGyro GmbH
Dornierstraße 14
31137 Hildesheim or email to info@auto-gyro.com or fax +49 (0) 51 21 / 8 80 56-19

<table>
<thead>
<tr>
<th>Aircraft Type</th>
<th>Aircraft Registration</th>
<th>Registered at</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airframe S/N</td>
<td>Rotor System S/N</td>
<td>Engine S/N</td>
</tr>
<tr>
<td>Airframe hours</td>
<td>Rotor System hours</td>
<td>Engine hours</td>
</tr>
</tbody>
</table>

Previous Owner

New Owner

<table>
<thead>
<tr>
<th>Email</th>
<th>Signature and Date</th>
</tr>
</thead>
</table>

Below fields are used for AutoGyro internal processing – do not fill in!

<table>
<thead>
<tr>
<th>Data entered onto database</th>
<th>Acknowledgement sent (date)</th>
<th>Job completed by</th>
</tr>
</thead>
</table>
This form is supplied to enable the owner/operator to inform (anonymously, if needed) AutoGyro GmbH of any incident, accident, or other field or service failure that they feel appropriate. The owner must also, of course, inform the relevant authorities if that is appropriate, e.g. Air Accident Investigation Branch etc.

Depending on the incident information supplied, a corrective action is investigated and, if needed, supplied back to the customer(s).

The information is stored in a database and is only used within AutoGyro GmbH for the above purpose.

Return this form to:
AutoGyro GmbH
Dornierstraße 14
31137 Hildesheim or email to info@auto-gyro.com or fax +49 (0) 51 21 / 8 80 56-19

<table>
<thead>
<tr>
<th>Aircraft Type</th>
<th>Aircraft Registration</th>
<th>Registered at</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airframe S/N</td>
<td>Rotor System S/N</td>
<td>Engine S/N</td>
</tr>
<tr>
<td>Airframe hours</td>
<td>Rotor System hours</td>
<td>Engine hours</td>
</tr>
</tbody>
</table>

Description of incident (be as precise as possible and use extra sheets if needed)

Incident reported by (information is only stored for further inquiry and deleted after investigation)

Email

<table>
<thead>
<tr>
<th>Signature and Date</th>
</tr>
</thead>
</table>

Below fields are used for AutoGyro internal processing – do not fill in!

| Investigation completed | Corrective action | Internal reference |